

CONTRATO IDU- 259 de 2003

4-4 ALTAMIRA SUR ORIENTAL emplo Adventisto 01 del Septimo Did CV 43 Sur 13 CLL 42A Sur 12 15 09 [™]I.C.B.F. 1 4 CII 43 SUN 03 CON ASA Salph Comunal B. Continental 02 \$ 417 Altamira 03 Tea 02 05 4 07 06 05

4-2-3 MORABLBA

4-5-6 CANADA GUIRIA S.O.

ESTUDIOS Y DISEÑOS PARA LA CONSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES - PROGRAMA DE PAVIMENTOS LOCALES GRUPO 2 ESTUDIO GEOTECNICO PARA EL DISEÑO DE PAVIMENTOS

IDU-259-GT-E-4-2 MORALBA VERSIÓN 0.0 IDU-259-GT-E-4-3 MORALBA VERSIÓN 0.0 IDU-259-GT-E-4-4 ALTAMIRA SUR ORIENTAL VERSIÓN 0.0 IDU-259-GT-E-4-5 CANADA VERSIÓN 0.0 IDU-259-GT-E-4-6 CANADA VERSIÓN 0.0

40-21-62

INSTITUTO DE DESARROLLO URBANO I. D. U.

ESTUDIOS Y DISEÑOS PARA LA CONSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES -PROGRAMA DE PAVIMENTOS LOCALES GRUPO 2

CONTRATO No. IDU-259 DE 2003

ESTUDIO GEOTECNICO PARA EL DISEÑO DE PAVIMENTOS (VIA MORALBA)

IDU-259-GT-E- 4-2 MORALBA (PPL 2004)

NOVIEMBRE 22 DE 2004

	VERSION 0.0	
	Vigente desde: 22/11/04	
ELABORO: Ing. Francisco Cervantes	REVISO: Ing. Manuel Almanza Mesa	APROBO: Ing. Manuel Almanza Mesa
FECHA: Noviembre 22 de 2.004	FECHA: Noviembre 22 de 2.004	FECHA: Noviembre 22 de 2.004
Flago Revati	FIRMA:	FIRMA: College
CARGO: Ing. Especialista	CARGO: Director de Estudios y Diseños	CARGO: Director de Estudios y Diseños

A.C.I. PROYECTOS S.A.

FQ14

CONTROL DE CAMBIOS DE DOCUMENTOS

	IDENTIFICACIÓN DEL	. DOCUMENTO
NOMBRE: JAIRO	MODIFICACIÓN IDENTIFICACIÓN DE QUIEN S GARCIA POLO	ANULACIÓN SUGIERE EL CAMBIO
CARGO: DIRECT	OR DE INTERVENTORIA JUSTIFICACIÓN DE	ELCAMPIO
CONTRATO: IDU-2		L CAMBIO
DOCUMENTO: IDU- VERSION: 0.0	-259-GT-E-4-2 MORALGA	
DECLIN	ACEPTADO EL CAMBIO? MEN DEL CAMBIO O RAZÓN PA	SI NO
RESUN	MEN DEL CAMBIO O RAZON PA	RA NO ACEPTAR EL CAMBIO
FIRMA DIRECTOR DE C	CALIDAD O ENCARGADO DEL	FIRMA TITULAR DEL CARGO QUE APROBÓ EL PROCEDIMIENTO INICIAL

A.C.I. PROYECTOS S.A.

FQ25-259-3

LISTA DE CHEQUEO DISEÑOS

PR	OY	EC.	TO:	

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

E٤	ŝΡ	E	AL	ID.	AC):

ESTUDIOS DE SUELOS

DOCUMENTO: IDU-259-GT-E-4-2 MORALOG

				_		
	REV. No	. 0.0 NO CUMPLE	OBSERVACIONES	REV. No	NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la				COMPLE	NO CUMPLE	·
CRITERIOS DE REVISION:						
Se realizó el inventario de daños de la vía para los casos		, i		1		
en que se requiere?						
2. Se aplicó correctamente el procedimiento de ensayos de laboratorio?	1					
Se realizaron la cantidad y tipo de ensayos establecida en la metodología?	/					
Se identifican los resultados de laboratorio de tal forma que permitan la trazabilidad de los mismos para cada vía?	/					
RESPONSABLE:	Ing. F, C	ervantes				
FIRMA:	910					
FECHA:	22/	11/04				
VERIFICACION (Confirmar que los resultados del dise	ño cumple	en con los re	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Existe coincidencia entre el registro de campo de los apiques, los ensayos de laboratorio, los perfiles estratigráficos definitivos y las conclusiones del estudio?		,				
 Las recomendaciones para la rehabilitación de cada vía corresponde con el inventario de daños y los resultados de los ensayos de laboratorio de suelos. 						
RESPONSABLE:	Ing M. A	l a anza	,			
FIRMA:	14	u				
FECHA:	221	11/04				
VALIDACION (Confirmar que cumple con los requisitos	s para su	aplicación o	uso)			
CRITERIOS DE VALIDACION						
Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:					-	
/ 				1		
FECHA:				1		
IFFURA.			1			

A.C.I.
PROYECTOS

A.C.I. PROYECTOS S.A.

FQ25-259-9

LISTA DE CHEQUEO DISEÑOS

P	R	O	Y	Ε	C	T	0	:	
_		-	_		_	2	12.50		

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

ESPECIALIDAD: DISEÑO ESTRUCTURAL DE PAVIMENTO

DOCUMENTO: IDU-259-GT-E 4-2 MORA 13 A

	REV. No.		OBSERVACIONES	REV. No		OBSERVACIONES
	•	NO CUMPLE		CUMPLE	NO CUMPLE	
REVISION (Confirmar su conveniencia para satisfacer la	is necesid	lades del C	liente)			
CRITERIOS DE REVISION:	/					
1. Son adecuados los criterios para la selección de la						
capacidad de soporte del suelo de cada una de las vías		ļ.,	FI			
Se realizaron los diseños para las alternativas de pavimentos previstas en la metodología.			EL ANALISIS ECONOMICO DE LAS ALTERNATIVAS SE MUESTRA EN EL DOCUMENTO DE PRESUPUESTOS			
 Los resultados del número de ejes equivalentes en el período de diseño corresponde con la tipología, uso y tráfico actual de la vía. 						
4. Las alternativas de pavimentos diseñados corresponden a las alternativas de rehabilitación recomendada.						
RESPONSABLE:	Ing. F. Ce	ervantes				
FIRMA:	914	,				
ECHA:	22/	11/04				
VERIFICACION (Confirmar que los resultados del dise	ño cumple	en con los r	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Los resultados definitivos del diseño de pavimento para cada alternativa corresponde con los diseños existentes de vías con caracteristicas similares.						
 Se tomaron los datos correctos de TPD cada 15 minutos, la tasa de proyección y la composición porcentual del tráfico según el estudio de tránsito. 						
RESPONSABLE:	Ing.M. A	manza /				
FIRMA:	W	W				
FECHA:	221	11/04				
VALIDACION (Confirmar que cumple con los requisitos	s para su	aplicación o	uso)			
CRITERIOS DE VALIDACION						
1. Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:						
FIRMA:						
FECHA:						

ESTUDIO GEOTÉCNICO PARA EL DISEÑO DE PAVIMENTO VÍA 4-02 MORALBA

TABLA DE CONTENIDO

1. INT	RODUCCIÓN	1
2. LO	CALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO	3
2.1	Características geométricas	3
2.2	Características climáticas	3
3. INV	/ESTIGACIONES REALIZADAS	5
3.1	Trabajos de campo	
3.2	Ensayos de laboratorio	6
4. CA	RACTERÍSTICAS GEOTÉCNICAS	8
4.1	Geologia ituto de Desarrollo Urbano	8
4.2	Estabilidad de los taludes	8
4.3	Estado actual de las calzadas	8
4.4	Perfiles estratigráficos	8
4.4.1	Relleno granular	9
4.4.2	Subrasante	9
4.5	Capacidad de soporte1	0

5. TR	RÁNSITO	11
6. DI	SEÑO DE PAVIMENTO	12
6.1	Solución de Rehabilitación	12
6.2	Diseño de pavimento	12
6.2.1	Consideraciones generales del método de la PCA	12
6.2.2	Pactores de diseño	13
6.2.3	Resultados obtenidos pavimento rígido	14
6.2.4	Consideraciones generales del Método AASHTO	15
6.2.5	Resultados obtenidos – Método AASHTO	18
7. ES	PECIFICACIONES	19
7.1	DE BOGOTÁ D.C. Concreto hidráulico	19
7.2	Suelo cemento .da. Dasarrollo. Urbano	19
7.3	Capa granular tipo Subbase granular	20
7.4	Capa de concreto asfáltico	20
8. AN	IÁLISIS TÉCNICO DE ALTERNATIVAS	21
8.1	Losas apoyadas sobre una capa de suelo cemento	21
8.2	Pavimento flexible	22
8.3	Alternativas recomendadas	22

9.	CONCLUSIONES Y RECOMENDACIONES 23
ANE	xos
ANE	XO 1: REGISTRO DE LOS APIQUES
ANE	XO 2: DETALLE DE ENSAYOS DE LABORATORIO
ANE	XO 3: ENSAYOS DE PENETRACIÓN CON CONO
ANE	XO 4: MEMORIAS DE CÁLCULO
ANE	XO 5: REGISTRO FOTOGRÁFICO

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD Instituto de Desarrollo Urbano

LISTA DE CUADROS

- Cuadro 1.1. Nomenclatura de la vía
- Cuadro 3.1. Profundidad de apiques
- Cuadro 5.1. Número de repeticiones esperadas por cada tipo de eje, por carril

LISTA DE FIGURAS

Figura 2.1. Localización del proyecto

Figura 7.1 a 7.8 Esquemas para la construcción de juntas para

pavimento rígido

Figura 9.1. Esquema de localización de geodrén

LISTA DE FORMATOS TÉCNICOS

FT-259-GT-4-02-1 Localización de apiques y perfiles

estratigráficos

FT-259-GT-4-02-2 Resultados de Investigación Geotécnica

1. INTRODUCCIÓN

En el siguiente informe se presentan y describen cada una de las actividades realizadas tanto en campo como en laboratorio y los resultados y conclusiones de los estudios e investigaciones de suelos efectuados para el diseño del pavimento de unas vías localizadas en el barrio Moralba, en cumplimiento del Contrato IDU 259-2003 "Estudios y Diseños para la construcción y/o evaluación para rehabilitación de accesos a barrios locales – Programa de pavimento locales Grupo-2", suscrito entre el IDU y A. C. I. PROYECTOS S. A.

Las vías se encuentran ubicadas en el sur oriente de la ciudad y se desarrollan en la Localidad de San Cristóbal. En el siguiente cuadro se presenta la nomenclatura de la vía:

Cuadro 1.1. Nomenclatura de la vía

Nomenclatura	De	Hasta
KR 17A	CL 42 S	TV 17A E
CL 42C S	TV 16B E	TV 17A E

Los estudios geotécnicos para el diseño del pavimento se efectuaron para cumplir con los objetivos que se presentan en forma resumida, a continuación:

 Mediante una evaluación superficial, determinar las condiciones actuales de la estructura existente

- Con la ejecución de investigaciones de campo y ensayos de laboratorio, determinar las condiciones físicas y mecánicas de las diferentes capas que conforman la estructura actual del pavimento y de la subrasante de la vía.
- Definir la solución de rehabilitación más apropiada para el pavimento, teniendo en cuenta las condiciones actuales de la vía, la subrasante, condiciones topográficas, condiciones de drenaje, etc.
- Con base en el tráfico que se espera durante un periodo de diseño de
 20 años, presentar dos alternativas de diseño del pavimento
- Determinar la estructura para los andenes

ALCALDÍA MAYOR
DE BOGOTÁ D.C.
MOVILIDAD
Instituto de Desarrollo Urbano

2. LOCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO

Tal como se enunció en la introducción, las vías estudiadas se encuentran ubicadas al sur oriente de la ciudad y se desarrollan en el barrio Moralba, perteneciente a la Localidad de San Cristóbal.

En la Figura 2.1 se presenta un plano con la localización del proyecto.

2.1 Características geométricas

La vía estudiada presenta las siguientes características:

TPD actual: mínimo, uso vehicular restringido

Tipo de terreno: ondulado

Número de calzadas: 1

Pendiente Longitudinal Máxima: EJE 1: 33.17%; EJE 2: 27.99%

Abscisas: EJE 1: K0+000 a K0+151.46; EJE 2: K0+000 a K0+145.27

2.2 Características climáticas

En general, el clima de la Sabana de Bogotá, está influenciado por el desplazamiento de la zona de Convergencia Intertropical que interviene en el régimen pluviométrico, además, por encontrarse la ciudad de Bogotá en la cordillera oriental, el comportamiento de las lluvias pertenece al tipo de circulación Valle-Montaña.

La temperatura promedio anual es del orden de 14.8° con un máximo promedio de 21.6° y mínimo promedio de 5.3°.

Los meses más lluviosos corresponden a abril y mayo en un primer periodo y septiembre y octubre en el segundo.

3. INVESTIGACIONES REALIZADAS

Para cumplir con los objetivos establecidos, se llevaron a cabo trabajos de campo y ensayos de laboratorio, los cuales se describen a continuación:

3.1Trabajos de campo

Como parte de los trabajos de campo, se efectuó una inspección visual de la calzada para definir las condiciones actuales de la vía y se realizaron apiques localizados en promedio cada 50 m , los cuales se llevaron hasta una profundidad tal que se conociera la subrasante. La localización de los apiques se presenta en el Formato Técnico FT-259-4-02-1, incluido en el siguiente capítulo y su profundidad fue la siguiente:

Cuadro 3.1. Profundidad de apiques

Apiqu e No	Prof. (m)
4-2-1	2.00
4-2-2	2.00
4-2-3	2.00
4-2-4	2.00
4-2-5	2.00
4-2-6	2.00

En cada investigación se elaboró el perfil estratigráfico determinando los espesores de las diferentes capas encontradas y registrando el nivel freático

si se llegase a encontrar. Por otra parte, se efectuaron ensayos de penetración con el cono de Yoder, el cual consiste en hincar el cono de penetración mediante la caída libre de un martillo de 8.0 Kg de peso, registrando la cantidad de golpes que se requiere para penetrar cierta profundidad del estrato estudiado. Con los resultados obtenidos, se pudo determinar de manera indirecta el valor del CBR de la subrasante.

Los datos obtenidos de campo fueron valorados y procesados mediante el programa PDC, del paquete INPACO, de la Universidad del Cauca y el Instituto Nacional de Vías.

La correlación empleada para el cálculo del CBR fue la de TRRL, la cual corresponde a:

$$CBR = 302 * (PDC)^{-1.057}$$

Los valores así obtenidos, sirvieron para determinar en forma indirecta la resistencia de la subrasante a lo largo de la vía

El registro de los apiques se incluye en el Anexo 1 y los resultados de los ensayos de penetración con cono en el Anexo 3

3.2 Ensayos de laboratorio

En cada apique se recuperaron muestras representativas de las diferentes capas encontradas y sobre dichas muestras se realizaron ensayos de laboratorio que consistieron en:

- Obtención de la humedad natural
- Granulometría por tamizado, incluyendo lavado sobre tamiz No. 200

- Límites de consistencia (líquido y plástico) sobre material que pasa el tamiz No. 40.
- CBR inalterado en condiciones de humedad natural
- CBR inalterado saturado

El detalle de los ensayos de laboratorio realizados se presenta en el Anexo 2.

4. CARACTERÍSTICAS GEOTÉCNICAS

4.1 Geología

En la Sabana de Bogotá se presentan afloramientos de rocas sedimentarias de origen marino y continental, con edades entre el cretáceo y el terciario y depósitos sedimentarios de edad pleistoceno a reciente. En orden cronológico, de la más antigua a la más reciente las unidades geológicas son: Formación Chipaque, Grupo Guadalupe, Formación Guaduas, Formación Cacho, formación Bogotá, Formación Arenisca La Regadera, Formación Usme, formación Tunjuelo y Formación Sabana.

4.2 Estabilidad de los taludes

El proyecto se desarrolla en una zona no hay cortes y terraplenes por lo cual no se requiere de un estudio de estabilidad.

MOVILIDAD

4.3 Estado actual de las calzadas o Urbano

De acuerdo con la evaluación superficial efectuada a lo largo de la vía se encuentra una relleno superficial granular.

4.4Perfiles estratigráficos

De las investigaciones realizadas, tanto de campo como de laboratorio, se presenta a continuación las características de cada una de las capas encontradas a lo larga de la vía:

4.4.1 Relleno granular

Esta conformado por grava limosa contaminado con desechos de construcción, de humedad media y densidad media. Se encuentra a lo largo del proyecto y su espesor varía entre 0.32 y 2.0 m.

4.4.2 Subrasante

Conformada por arcilla limosa de humedad media y consistencia media

Descripción: Arcilla limosa

% pasa No 4: 77-100%

% pasa tamiz No 200:50-100%

Límite líquido: 27-51%

Índice de plasticidad: 10-25%

Humedad natural: 14-30%

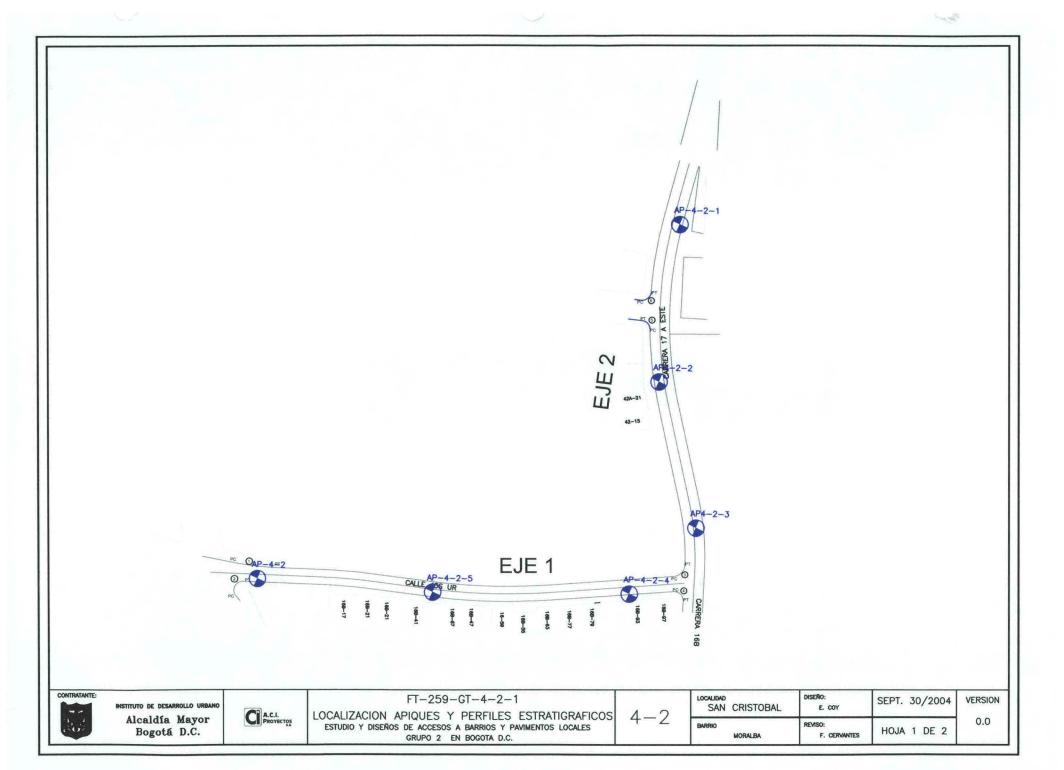
Clasificación U. S. C predominante: CL rollo Urbano

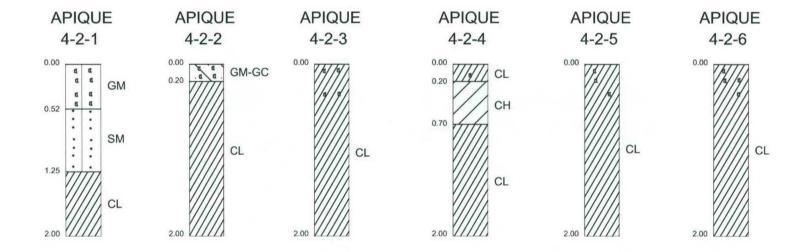
Clasificación AASHTO predominante: A-7-6 y A-6

CBR de cono: 4.5-19%

CBR inalterado en condiciones de humedad natural: 8.6.-15.7%

CBR inalterado sumergido: 5.4-6.4%




4.5Capacidad de soporte

La capacidad de soporte de la subrasante se definió en términos de CBR, para lo cual se efectuaron ensayos de penetración con cono cuyos resultados muestran valores que varían entre 4.5 y 19.0%. Adicional a lo anterior el CBR natural varió entre 8.6 y 15.7% y el sumergido entre 5.4 y 6.4%. De acuerdo con lo anterior se adopta como CBR de diseño un valor de 5.0%

En el Formato Técnico FT-259-GT-4-02-1 se presentan la localización de los apiques y los perfiles estratigráficos y en el Formato Técnico FT-259-GT-4-02-2, el resumen de los resultados de la investigación geotécnica

ALCALDÍA MAYOR
DE BOGOTÁ D.C.
MOVILIDAD
Instituto de Desarrollo Urbano

INSTITUTO DE DESARROLLO URBANO Alcaldía Mayor Bogotá D.C.

FT-259-GT-4-2-1

LOCALIZACION APIQUES Y PERFILES ESTRATIGRAFICOS ESTUDIO Y DISEÑOS DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2 EN BOGOTA D.C.

4 - 2

LOCALIDAD SAN CRISTOBAL MORALBA

DISENO: E. COY REVISO:

F. CERVANTES

SEPT. 30/2004 VERSION HOJA 2 DE 2

0.0

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 INVESTIGACION GEOTECNICA RESULTADOS PPL -2004 FT- 259 - GT- 4-2 - 2

LOCALIDAD VIA DESDE HASTA BARRIO **FECHA DE** CONTRATO: Septiembre 30 de KR 17 A CALLE 42 S CALLE 42 BIS S REALIZACIÓN 2004 4-2 CALLE 42 BIS S CALLE 42 A S SAN CRISTOBAL **MORALBA** IDU 259 DE 2003 CALLE 42 A S TV 17 A E VERSIÓN 0.0 CALLE 42 S TV 16 B E TV 17 A E APIQUE No. **GRANULOMETRIA CLASIFICACION** CBR % **MUESTRA** PLASTICIDAD IL % PASA TAMIZ AASHTO PDC INALTERADO **ABSCISA** PROFUN. Tipo de No. No. No. No. No. LL(%) LP(%) IP(%) USC **GRUPO** IG Wn (%) (Wn-LP)/IP Wn (%) SUM EXP % 10 40 200 (m) Capa 0,00-0,52 62 53 Granular 45 NL NP NP GM A-2-4 7,7 26 0 4-2-1 0,52-1,25 Granular 78 73 66 42 25 18 7 SM A-4 0 15,6 3 1,25-2,00 100 82 27 17 10 CL A-4 6 Subrasant 14,3 5,9 0,00-0,20 Granular 58 50 | 42 28 20 14 6 GM-GC A-2-4 0 5,6 4-2-2 0,20-2,00 90 89 87 78 42 22 20 CL Subrasant A-7-6 15 15,3 9,1 0,00-1,25 Granular 77 75 71 50 32 21 11 CL A-6 3 15,1 4-2-3 1,25-2,00 Subrasant 99 97 93 83 35 18 17 CL. A-6 13 13,3 4,5 0,00-0,20 100 44 A-7-6 30.4 0.28 Granular 91 25 19 CL 19 4-2-4 0,20-0,70 Subrasant 100 51 26 25 СН A-7-6 29 22,6 8,8 8,6 5,36 1,2

ABORO :				E.C	.A						REVISO	:				F.	C.V			
	<u> </u>		0,10-2,00	Oublasain	100	- 55	- 00	· ·	- 01	20	1	- 02	Α.	<u>'-</u>	10,1		13,0			+
	4-2-0	2	0,70-2,00	Subrasant	100	93	85	77	37	20	17	CL	A-6	12	15,1	1	19,0	1		\top
	4-2-6	1	0,00-0,70	Granular			100	96	45	22	23	CL	A-7-6	24	14,1					Т
	4-2-5	2	0,50-2,00	Subrasant	98	95	92	86	40	20	20	CL	A-6	17	14,9					
	4-2-5	1	0,00-0,50	Granular		100	99	77	37	20	17	CL	A-6	12	18,0		7,0	15,73	6,39	
		1			l	i	1			ł				i	İ					
		<u> </u>	0,70-2,00	Suorasant				100	39		17	UL.	A-6	19	14,0	L		L	l	

5. TRÁNSITO

Para efectos de diseño se adoptaron los siguientes valores:

N=5.0*10⁵ para el diseño de pavimento flexible

Para el diseño en pavimento rígido:

Cuadro 5.1. Número de repeticiones esperadas para cada tipo de eje, por carril

Tipo de eje	Carga por eje (KN)	Repeticiones		
	80	131400		
Simple	90	0		
	95	0		
Tándem	200	0		
7 4.146111	230	0		
Tridem	240	0		

6. DISEÑO DE PAVIMENTO

Con base en los análisis realizados, incluyendo los resultados de laboratorio y las características de la vía y el tráfico, se presenta a continuación la solución de la rehabilitación y el diseño del pavimento

6.1 Solución de Rehabilitación

 La solución para la rehabilitación de la vía consiste en la construcción de la vía, pues actualmente no cuenta con ningún tipo de estructura

6.2 Diseño de pavimento A MAYOR

Se presentan las dos siguientes alternativas:

- Losas de concreto de módulo de rotura de 4.1 Mpa a los 28 días apoyadas sobre una capa de suelo cemento de resistencia a la compresión a los 7 días de 2.1 MPa y un espesor de 200 mm
- Pavimento de tipo flexible

Para la determinación del espesor de las losas se empleó el método de la PCA, el cual se describe a continuación:

6.2.1 Consideraciones generales del método de la PCA

El método de la PCA tiene en cuenta las siguientes consideraciones:

- Además de involucrar las consideraciones analíticas obtenidas por Westergaard, Pickcett y Ray, tiene en cuenta los resultados y el funcionamiento observados en pruebas experimentales de la AASHTO y modelos a escala como el ensayo de Arlington.
- Este método tiene en cuenta además del grado de transferencia de carga entre losas, el efecto de usar bermas ligadas al pavimento, las cuales reducen los esfuerzos de flexión y las deflexiones producidas por las cargas de los vehículos
- Se tienen en cuenta dos criterios de diseño: A) Fatiga, con el cual se garantiza que los esfuerzos del pavimento producidos por la acción repetida de las cargas se encuentren dentro de límites de seguridad y que se presente la fatiga por agrietamiento. B) Erosión, para limitar el efecto de deflexión en los bordes de las losas, juntas y esquinas y con ello controlar la erosión del suelo de fundación y de los materiales de las bermas. Este criterio es necesario pues fallas como el bombeo, el desnivel de losas y el deterioro de bermas son independientes de la fatiga.

6.2.2 Factores de diseño.

Una vez de elegir el tipo de pavimento por construir, la subbase sobre la cual se apoyarán las losas, tipo de transferencia de carga entre losas y la presencia o no de bermas se deben tener en cuenta los siguientes factores:

6.2.2.1 Resistencia del concreto a la flexión

Se tiene en cuenta para el procedimiento de diseño por el criterio de fatiga y con él se controla el agrietamiento del pavimento bajo la acción repetida de

cargas vehiculares. Para este caso se utilizarán losas de concreto con una resistencia a la flexión, medida por ensayos de módulo de rotura a los 28 días de 4.1 MPa

6.2.2.2 Capacidad de soporte de la subrasante

Se mide en términos del módulo de reacción (K), el cual se puede estimar con el CBR, ya que no es indispensable determinar el valor exacto del módulo K, ya que variaciones no muy grandes de él, prácticamente no afectan los espesores de pavimento.

Para un valor de CBR de 5.0% y una base estabilizada con cemento de 15.0 cm de espesor, se tiene un valor de K combinado de:

 $K_{Combinado} = 5.39 \text{ Kg/cm}^2$

6.2.2.3 Tránsito LCALDÍA MAYOR

Se tendrán en cuenta el número y la magnitud de las cargas por eje que se esperan durante el periodo de diseño, los cuales fueron calculados en el capítulo anterior.

6.2.2.4 Factor de seguridad de carga

El método de diseño exige que las cargas reales esperadas se multipliquen por un factor de seguridad de carga. Para este caso se adopta un valor de factor de seguridad de carga (Fsc) de 1.1

6.2.3 Resultados obtenidos pavimento rígido

En el Anexo 4 se presenta la memoria de cálculo para la determinación de los espesores de losa requeridos.

La estructura recomendada será:

Losa de concreto de MR=4.1 Mpa: 200 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

Para el diseño del pavimento flexible se utilizará la metodología desarrollada por la AASHTO

6.2.4 Consideraciones generales del Método AASHTO

Después de muchos años de investigación, la AASHTO, definió una metodología de diseño, en la que ha integrado varios factores o variables entre las cuales se encuentran:

6.2.4.1 Tránsito

Representado por el número de ejes equivalentes de 8.2 toneladas que utilizarán la vía en el carril de diseño durante un período determinado de tiempo.

Para este caso será:

 $N = 5.00 * 10^5$

6.2.4.2 Confiabilidad

Se refiere al nivel de probabilidad que tiene una estructura de pavimento diseñada para durar a través del período de análisis, tomando en cuenta las posibles variaciones del tráfico previstas así como las del modelo de comportamiento AASHTO, proporcionando un nivel de confiabilidad R que asegure que las secciones del pavimento duren el período para el cual fueron

diseñadas. De acuerdo con el tipo de vía, el valor adoptado de confiabilidad es del 90% con el cual el valor de Desviación Normal Zr será de –1.282.

6.2.4.3 Índice de servicio:

Es la habilidad específica de una sección de pavimento para servir al tráfico. Para efectos del diseño se utiliza el valor de ΔPSI que se define como:

 $\Delta PSI = Po - Pf$

siendo

Po: Índice de serviciabilidad inicial=4.2

Pf: Índice de serviciabilidad final=2.5

6.2.4.4 Caracterización de los Materiales de las Capas de Pavimento:

Las diferentes capas que conforman la estructura del pavimento están caracterizadas por el "Coeficiente de Capa" que corresponde a una medida de la habilidad relativa de una unidad de espesor de un material dado para funcionar como componente estructural del pavimento.

El coeficiente de capa para cada material será:

Cuadro 6.1. Coeficientes de capa empleados en el diseño del pavimento

Tipo de material	Coeficiente de capa (a _i)
Concreto asfáltico tipo MDC-2	0.35
Concreto asfáltico tipo MDC-1	0.35
Capa granular tipo base estabilizada con cemento	0.18
Capa granular tipo subbase	0.11

6.2.4.5 Coeficiente de drenaje

Por las condiciones topográficas del terreno y las características de los materiales que se van a utilizar en las capas, se emplearán los siguientes coeficientes de drenaje:

Cuadro 6.2. Coeficientes de drenaje empleados en el diseño del pavimento

Tipo de material	Coeficiente de drenaje (mi)					
Concreto asfáltico tipo MDC-2	1.0					
Concreto asfáltico tipo MDC-1	1.0					
Capa granular tipo base estabilizada con cemento	1.0					
Capa granular tipo subbase	1.0					

6.2.4.6 Módulo de la subrasante

De acuerdo con lo descrito en el capítulo 4, el CBR de diseño corresponde 5.00%

El módulo de la subrasante se obtuvo con base en la ecuación de la AASHTO:

ESBR = 1500*CBR (psi), con la cual,

ESBR = 1500*5.0 = 7500 (psi)

6.2.4.7 Número estructural (Sn)

El número estructural requerido para el período de diseño se obtiene con base en la siguiente ecuación:

 $Log(N) = ZR^*So + 9.36^*log(SNr + 1) - 0.20 + (\Delta PSI/(4.2 - 1.5)/(0.4 + 1094/(SNr + 1)^{5.19}) + 2.32^*log(ESBR)^{18.07}

en la cual,

N: Número de ejes equivalentes

ZR: Desviación normal que depende del nivel de confiabilidad R=-1.282

So: Desviación estándar total=0.45

SN: Número estructural requerido (")

ΔPSI: Po - Pf

ESBR = Módulo de resiliencia de la subrasante

6.2.5 Resultados obtenidos - Método AASHTO

En las memorias de cálculo se incluye el detalle de la determinación de los espesores de cada capa ALCALDÍA MAYOR

El número estructural requerido será de:

MOVILIDAD Sn = 3.10" Instituto de Desarrollo Urbano

El cual se obtiene con la siguiente estructura:

Capa de rodadura en concreto asfáltico tipo MDC-2: 75 mm

Base estabilizada con cemento: 150 mm

Subbase granular: 240 mm

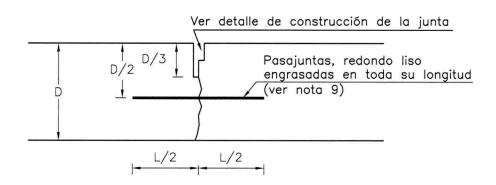
7. ESPECIFICACIONES

Las diferentes capas que conformarán la estructura del pavimento, deberán cumplir con los siguientes requerimientos:

7.1 Concreto hidráulico

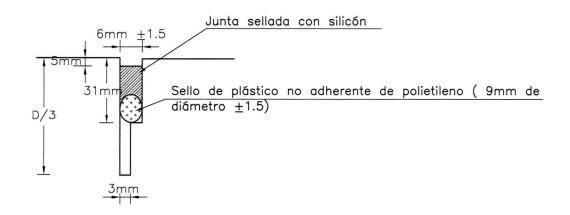
Las losas de concreto hidráulico tendrán un módulo de rotura de 4.1 Mpa.

Los materiales por emplear, como son cemento, agua, agregado fino y agregado grueso, deberán cumplir con los requerimientos establecidos en el artículo 500 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.


DE BOGOTA D.C.

En las figuras 7.1 a 7.8, se presentan los esquemas para la construcción de juntas de contracción transversales, juntas longitudinales y transversales de construcción, juntas de expansión y los criterios que se deben tener en cuenta para la modulación de las losas.

7.2 Suelo cemento


La capa de suelo cemento deberá cumplir con todos los requerimientos establecidos en el artículo 341 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

CORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

D= ESPESOR DE LA LOSA DE PAVIMENTO

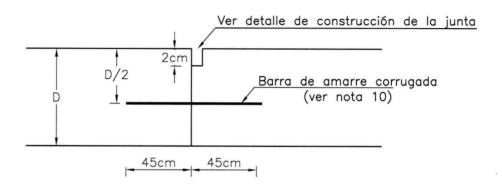
DETALLE DE CONSTRUCCIÓN DE LA JUNTA

NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

La ranura inicial de 3 mm. para debilitar la sección deberá ser hecha en el momento oportuno para evitar el agrietamiento de la losa, la pérdida de agregados en la junta, o el desportillamiento. El corte adicional para formar el depósito de la junta deberá efectuarse cuando menos 72 horas después del vaciado.

CORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)


IDU-259-2003
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN
Y/O EVALUACIÓN PARA REHABILITACIÓN DE
ACCESOS A BARRIGOS Y PAVIMENTOS LOCALES
GRUPO 2.

4-2 ESCALA:
sin

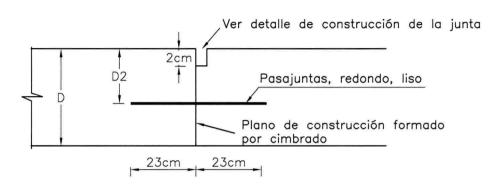
FECHA:
OCTUBRE DE 2004

FIGURA 7.1

CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)

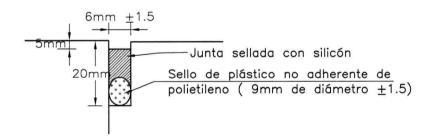
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA



NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.


	COMSULTOR:		PROYECTO:	VIA	ESCALA:	
Alcaldia Mayor Bogota B.C.	A.C.I. PROYECTOS	CORTE Y SELIADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)	IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	4-2	SIN E DE 2004	FIGURA 7.2

CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 3)

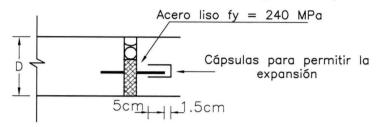
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA

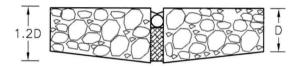
NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

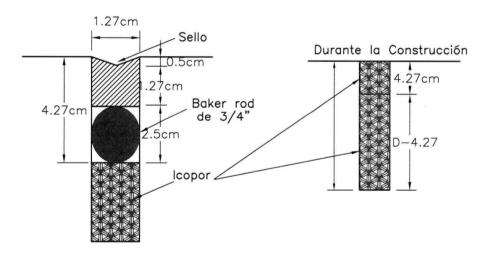
	3
	A.C.I.
	PROYECTOS
_	3.A.


CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTEUCCIÓN CON PARAJUNTAS (TIPO 3)

PROTECTO	١,
IDU-259-2003	
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	FE

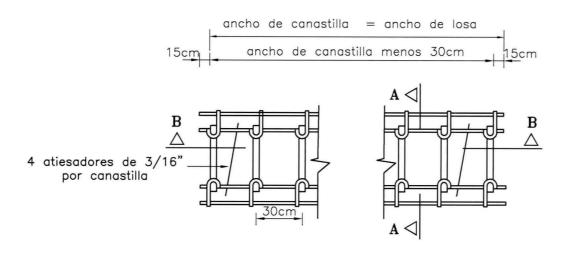

VIA 4-2	ESCALA: SIN	
FECHA: OCTUB	RE DE 2004	F

JUNTA DE EXPANSIÓN TIPO 4

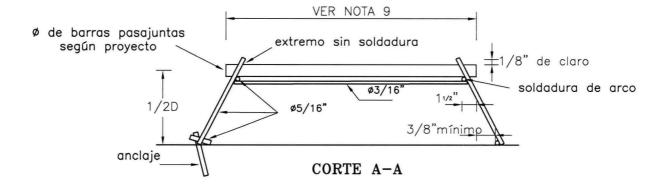

JUNTA DE EXPANSIÓN CON DOVELAS (TIPO 4A)

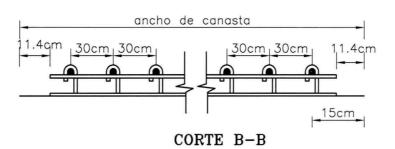
JUNTA DE EXPANSIÓN SIN DOVELAS (TIPO 4B)

DETALLE DE LA JUNTA



NOTA:


Cuando se tenga la losa conformada, se procederá a retirar el icopor de la parte superior y se construirá la estructura de sello.


	CONSULTOR:		PROYECTOR		ESCALA:		
METITUTO DE DESARROLLO URBANO	A.C.I.		IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-2	SIN	FIGURA 7.4	
Alcaldia Mayor Bogotá B.C.	PROYECTOS	JUNTA DE EXPANSIÓN TIPO 4			RE DE 2004	FIGURA 7.4	

CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN

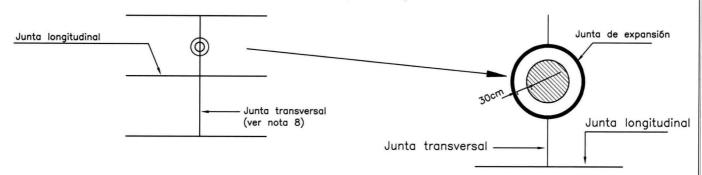
VISTA EN PLANTA

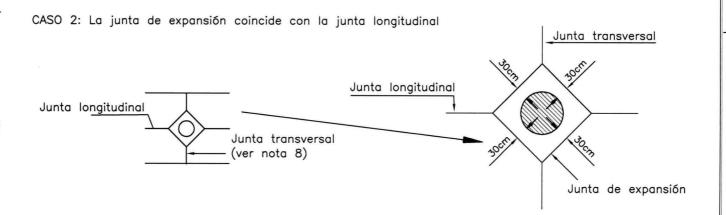
Alcaldia Mayor Bogota D.C. A.C.I. PROYECTOS

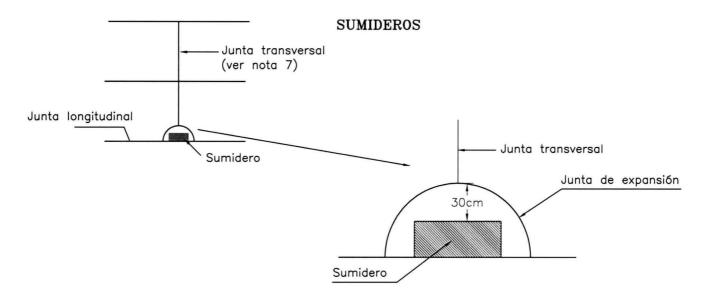
NASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN

IDU-259-2003
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION
Y/O EVALUACION PARA REHABILITACION DE
ACCESOS A BANRIOS Y PAVIMENTOS LOCALES
GRUPO 2.

VIA 4-2 ESCALA:

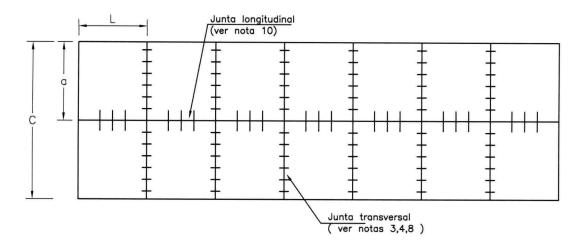

SIN


FECHA:


OCTUBRE DE 2004

CASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCIÓN

CASO 1: La junta de expansión no concide con la junta longitudinal


A.C.I. PROYECTOS

ASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCION-SUMIDEROS IDU-259-2003
ESTUDIOS Y DISENOS PARA LA COSTRUCCION
Y/O EVALUACION PARA REHABILITACION DE
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES
GRUPO Z
GRUPO Z

4-2 ESCALA:
SIN

FECHA:
OCTUBRE DE 2004

MODULACIÓN DE LOSAS

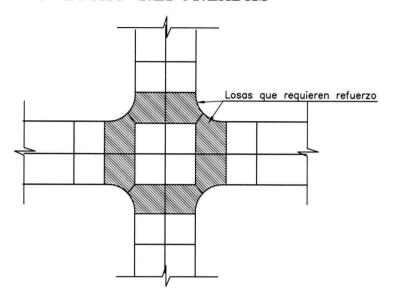
NOTAS GENERALES:

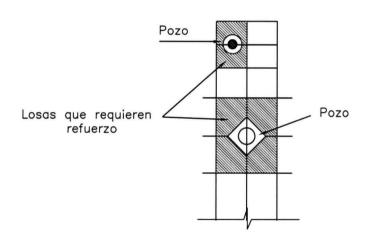
- El ancho de la placa (a) será la mitad de la calzada C/2.
 La relación de esbeltez (L/a) deberá estar entre 1.0 1.4
 Las juntas transversales serán de contracción aserradas con pasajuntas (tipo 1)
- 2. Donde se termine la fundida del día se construirá una junta transversal de
- 3. construcción (tipo 3). Esta junta deberá coincidir siempre con una junta
- transversal de contracción.
 La junta longitudinal será de construcción con pasajuntas (tipo 2).
 Se emplearon juntas de expansión tipo 4A (con dovelas) cuando se presenten
- 5. cambios importantes en la dirección de la vía.
- 6. Para el caso de pozos y sumideros se empleará la junta de expansión tipo 4B. La modulación de las losas deberá ajustarse a la presencia de obras hidráulicas
- 7. como pozos de inspección y sumideros de tal manera que la junta transversal
- 8. coincida con dichas estructuras, manteniendo la relación de esbeltez. La longitud y diámetro de las barras pasajuntas dependerán del espesor de losa según el siguiente cuadro:

ESPESOR DEL PAVIMENTO		RO DEL ADOR	LONGITUD TOTAL	SEPARACION ENTRE CENTROS
(Cm)	(Cm)	(Pulg)	(Cm)	(Cm)
16-18	2.22	7/8"	35	
19-20	2.54	1"	35 40 45	30
21-23				24
24-25	2.54			19
26-28	2.54	1*	45	15

- 10. La barra de amarre para la junta longitudinal de construcción será de 90cm de longitud y 1/2" de diámetro de acero de 420 MPa. Se colocarán 3 por losa.
- 11. Algunos de los detalles han sido tomados de los Criterios y Especificaciones para Diseño y Construcción de Pavimentos de Concreto Hidraulico 2003. ASOCRETO.

TO DE DESARBOLLO URBANO
Alcaldia Mayor
MODELLE MAJOR
Bogota D.C.


IDU-259-2003
ESTUDIOS Y DISEÑOS PARA LA CC
Y/O EVALUAÇION PARA REHABIL
ACCESOS A BARRIOS Y PAVIMENT.


VIA 4-2 SIN

COSTRUCCION ILITACION DE VITOS LOCALES

OCTUBRE DE 2004

MODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

NOTA:

- 1. Todas las losas asimétricas requieren de refuerzo
- 2. El refuerzo consistirá en varillas $\phi 1/2$ " cada 25cm en las dos direcciones.
- 3. El refuerzo se colocará a una distancia de D/3 medida desde la parte superior de la losa.

	MISTITUTO DE DESARROLLO URBANO
P. Markey	Alcaldia Mayor Bogotá D.C.
ESTON.	Bornets D.C.

IODULACIÓN EN INTERSECCIONES Y LOGAS REPORZADAS

IDU-259-2003	
Y DISEÑOS PARA LA COSTRUCCION	_
UACION PARA REHABILITACION DE	FEC
A BARRIOS Y PAVIMENTOS LOCALES	
GRUPO 2.	

VIA	ESCALA:	
4-2	SIN	

7.3Capa granular tipo Subbase granular

La capa granular tipo subbase, deberá cumplir con las especificaciones establecidas en las normas IDU

7.4 Capa de concreto asfáltico

Los materiales por emplear en la construcción de la capa de rodadura (MDC-2) deberán cumplir con las Normas de construcción del INV – 1996, artículo 450

8. ANÁLISIS TÉCNICO DE ALTERNATIVAS

Desde el punto de vista técnico, las alternativas presentadas son viables y sus ventajas y desventajas son las siguientes:

8.1Losas apoyadas sobre una capa de suelo cemento

Las ventajas y desventajas que se tienen al implementar esta alternativa son las siguientes:

- Requiere de una profundidad de excavación del orden de 0.35 m
- Si el mezclado se hace en vía, se requiere del empleo de maquinas mezcladoras rotativas que garanticen un buen mezclado con el cemento.
- Si se mezcla en planta, se facilita el proceso constructivo
- El material no es fácilmente erosionable, lo cual es favorable para evitar el fenómeno de bombeo en las losas
- En época de lluvias el rendimiento en el proceso constructivo se ve diezmado
- Las labores para mantenimiento son mínimas y se requieren en un lapso considerable de tiempo, aproximadamente cada 5 años

8.2Pavimento flexible

Sus ventajas y desventajas son las siguientes:

- Requiere de excavaciones del orden de 0.48 m.
- En época de lluvia los rendimientos de construcción disminuyen notablemente
- Su costo inicial es menor que la alternativa en pavimento rígido
- Su mantenimiento requiere de labores de parcheo y sello de fisuras cada 3 años aproximadamente

8.3 Alternativas recomendadas

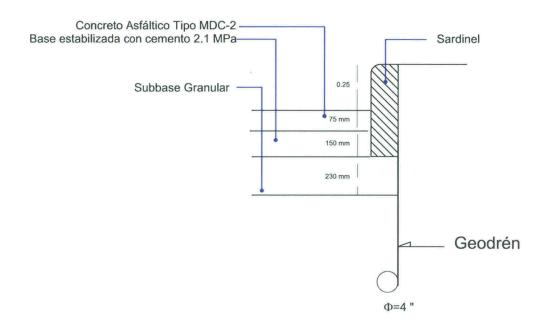
Desde el punto de vista técnico, cualquiera de las alternativas presentadas podrá implementarse, sin embargo, teniendo en cuenta las características de los pavimentos en el barrio, se recomienda implementar la solución de losas apoyadas sobre una capa de base estabilizada con cemento

9. CONCLUSIONES Y RECOMENDACIONES

De los análisis y descripciones anteriores se deducen las siguientes conclusiones y recomendaciones:

- La vía denominada 4.02, Moralba, presenta actualmente una capa granular tipo afirmado con desechos de construcción
- La subrasante natural encontrada corresponde a arcilla limosa y limo arcilloso de consistencia media
- Por las condiciones actuales de la vía, se recomienda como solución de rehabilitación la construcción de la estructura del pavimento, que por las condiciones topográficas y los pavimentos existentes en la zona, se recomienda que sea en concreto hidráulico.
- De acuerdo con las características de la subrasante y el tráfico esperado en los próximos 20 años, la alternativa para la estructura del pavimento es la siguiente:
 - Losa de concreto de MR=4.1 Mpa: 200 mm
 - Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm
- Para evitar la contaminación de las capas granulares se recomienda la colocación de un geotextil de separación tipo T1400 o similar

- Los diseños presentados tienen como premisa que la vía contará con un adecuado sistema de drenaje superficial. Para el drenaje subsuperficial, se deberán colocar, tal como lo muestra la figura 9.1, filtros tipo geodrén o similar conectados a los sumideros o pozos de aguas lluvias. Estos filtros se deberán colocar a lo largo de la vía en el costado más alto en la KR 17 A y en ambos costados en CL 42 S.
- De acuerdo con las características de la subrasante, se recomienda para los ándenes la siguiente estructura


Adoquín: 60 mm

Arena: 40 mm

Subbase granular: 250 mm

 Las conclusiones y recomendaciones presentadas en este informe, están basadas en investigaciones puntuales realizadas a lo largo de la vía, por lo cual es factible que durante la construcción se presenten condiciones diferentes a las consideradas en el presente estudio. En caso de que esto suceda, se deberá informar a la firma consultora para recomendar las medidas del caso

ESQUEMA DE LOCALIZACION DE GEODREN

Nota:

1. El tubo del geodrén se conectará al alcantarillado pluvial.

Alcal	dia Mayor otá D.C.	CONTRATISTA:	A.C.I. PROYE	CTOS
TITULO:	SQUEMA DE LOCALI. 4-		GEODREN	
DISERIO: F. Cervantes F. Cervantes S		E 2004	FIG	GURA N° 9.1
REVISO: F. Cervantes	ESCALA: SIN ES	ESCALA: SIN ESCALA		ARCHIVO;

REGISTRO DE LOS APIQUES

MOVILIDAD
Instituto de Desarrollo Urbano

REGISTRO DE PERFORACIÓN

APIQUE No.

4-2-1

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

Cra 17 A Este.

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.	MUESTRA			DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION & OBSERVACIONES
0,00	1	0.00-0.52	Alterada	0.00-O.52 Relleno de escombros de construcción en matriz de grava limosa amarilla de humedad media.
0,50				
1,00	2	0.52-1.25	Alterada	0.52-1.25 Arena limosa café con grava fina de humedad alta.
1,50				
1,30	3	1.25-2.00	Alterada	1.25-2.00 Arcilla limosa habana - amarilla- rojiza de plasticidad baja y humedad baja.
2,00				
				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No.		4-2-2		REALIZÓ: E.C.A	FECHA: SEPT. 30 DE 2004		
LOCALIZACIÓN:		: Cra 17 A		REVISÓ: F.C.V		HOJA No:	1 de 1
PROF.	PROF. MUESTRA		DESCRIPCIÓN	ESCRIPCIÓN Y OBSERVACIONES			
(m)	No	PROF. (m)	TIPO		DESCRIPCION	N T OBSERVAC	IONES
0,00	1	0.00-0.20	Alterada	0.00-O.20 Grava	limo-arcillosa an	narilla de humedad	d media.
0,50				-			
1,00							
	2	0.20-2.00	Alterada			amarilla-rojiza de e escombros de la	plasticidad media a alta drillo
1,50				_			
2,00							
				2.00 FIN DEL AF	PIQUE		

REGISTRO DE PERFORACIÓN

APIQUE No.		4-2-3		REALIZÓ: E.C.A		FECHA:	SEPT. 30 DE 2004	
LOCALIZACIÓN:		Cra 17 A Este		REVISÓ:	F.C.V	HOJA No:	1 de 1	
PROF.		MUESTRA	A		DESCRIPCIÓN Y OBSERVACIONE		IONES	
(m)	No	PROF. (m)	TIPO		DESCRIPCIO	N Y OBSERVAC	IONES	
0,00								
0,50								
1,00	1	0.00-2.00	Alterada			de ladrillo en mat y humedad media	riz de arcilla limosa caf a.	
1,50						,		
2,00								
				2.00 FIN DEL AF	PIQUE		 -	

REGISTRO DE PERFORACIÓN

APIQUE No. LOCALIZACIÓN: PROF.		4-2-4 CII 42 C Sur N.16B-93 E MUESTRA		REALIZÓ:	E.C.A	FECHA:	SEPT. 30 DE 2004
				REVISÓ: F.C.V		HOJA No:	1 de 1
						LV OBSERVAS	NONEO
(m)	No	PROF. (m)	TIPO		DESCRIPCION	I Y OBSERVAC	JUNES
0,00	1	0.00-0.20	Alterada	0.00-O.20 Arcilli media.	a limosa habana	de plasticidad	media a alta y humedad
0,50	2	0.20-0.70	Inalterada	0.20-0.70 Arcilla y consistencia m		marilla de plastic	idad alta, humedad baja
1,00				4			
1,50	3	0.70-2.00	Alterada	0.70-2.00 Arcilla baja.	limosa amarilla	-rojiza de plastic	idad media y humedad
2,00				2.00 FIN DEL AF	PIQUE		

REGISTRO DE PERFORACIÓN

APIQUE No.

4-2-5

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 42 C Sur N.16B-57

REVISÓ:

F.C.V

HOJA No:

1 de 1

(m) 0,00	No			DECORIDOIÓN V ODCEDVACIONES	
0.00		PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES	
0,50	1	0.00-0.50	Inalterada	0.00-0.50 Arcilla limosa rojiza y amarilla de plasticidad media, humedad baja y consistencia firme.	
1,00					
1,50	2	0.50-2.00	Alterada	0.50-2.00 Arcilla limosa habana de plasticidad media a alta y humedad baja.	
2,00					

REGISTRO DE PERFORACIÓN

APIQUE No.

4-2-6

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 42 C S N. 16B-18 E

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.		MUESTRA	4	DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION Y OBSERVACIONES
0,00				
0,50	1	0.00-0.70	Alterada	0.00-O.70 Arcilla limosa habana-amarilla-rojiza de plasticidad media a alta y humedad baja.
1,00				
1,50	2	0.70-2.00	Alterada	0.70-2.00 Arcilla limosa habana-rojiza de plasticidad media y humedad baja.
2,00				2.00 FIN DEL APIQUE

DETALLE DE ENSAYOS DE LABORATORIO

MOVILIDAD

Instituto de Desarrollo Urbano

FL-8

UBICACIÓN

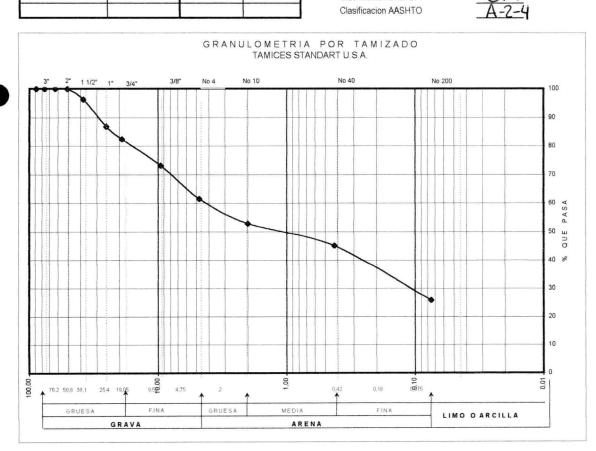
A.C.I. PROYECTOS S.A.

ANALISIS GRANULOMETRICO C-259-4-02-01-01

DESCRIPCION:

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL FECHA 03-Jun-04

DERECHO


PROF.: 0,00/0,52 m G R A D A C I O N

P1=	2.302,2	P2=	1.708,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	82,0	3,6	96,4
1*	218,0	9,5	87,0
3/4"	102,0	4,4	82,5
3/8"	212,0	9,2	73,3
4	272,0	11,8	61,5
10	198,0	8,6	52,9
40	180,0	7,8	45,1
200	444,0	19,3	25,8
FONDO	594,2	25,8	

Carrera 17A Este MARGEN

D4	2672	RAL
P1		
P2	2494	
P3	191,8	
%HUM	7,7	
Limite Líquido	_	NL
Límite Plástico	_	NP
Índice Plasticidad		0,0%
Especificación: Gra	dacion tipo	A
,		38,5
Grava (%)	-	
	-	38,5 35,7 25,8

RECEBO

OBSERVACIONES:

Geotechologe/

FIRMA:

Ingeniero .

ANALISIS GRANULOMETRICO

C-259-4-02-01-02

OBRA: **UBICACIÓN**

IDU-259-03 Carrera 17A Este MARGEN

SAN CRISTOBAL

FECHA

03-Jun-04

PROF.:

Tamiz

31/2"

40

200

FONDO

0,52/1,25 m

DERECHO

65,8

41,8

SECTOR:

DESCRIPCION:

SUELO NATURAL

GRADAC		
 2.926,5	P2=	1.702,0
Peso retenido	% Retenido	% Pasa
0,0	0,0	100,0
0,0	0,0	100,0

7,2

23,9

41,8

3" 2" 1/2" 0,0 0,0 100,0 2" 0,0 0,0 100,0 1 1/2" 276,0 9,4 90,6 66,0 2.3 88.3 3/4" 24,0 0.8 87,5 3/8" 136,0 4,6 82,8 4 144,0 4,9 77,9 10 146,0 5,0 72,9

210,0

700,0

1.224,5

HUMED	HUMEDAD NATURAL				
P1	3674				
P2	3218				

P3 291,5

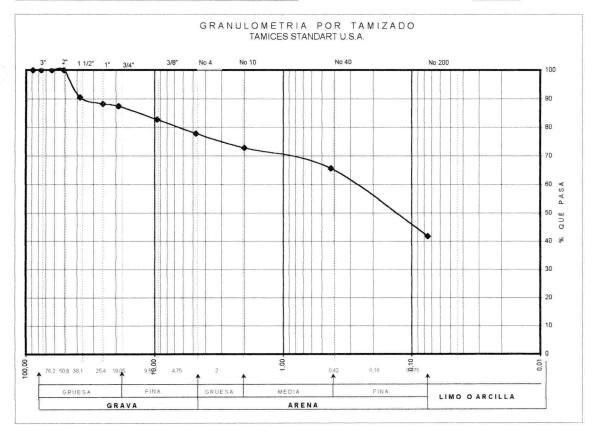
%HUM 15,6 Limite Liquido

24,60% Límite Plástico 18,22% Índice Plasticidad 6,4%

Especificación:

Gradacion tipo A

sección 13 (IDU)


Grava (%) Arena (%)

36,1 41,8

Finos (%) Clasificacion U.S.C. Clasificacion AASHTO

SM

22,1

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-01-02

OBRA:

IDU-259-03

SECTOR: SAN CRISTOBAL

MARGEN DERECHO FECHA:

03-Jun-04

UBICACIÓN Carrera 17A Este DESCRIPCION: SUELO NATURAL

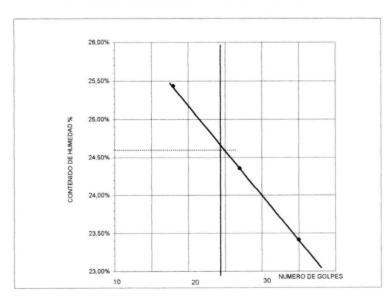
LIMITE	.IQUIDO		
35	27		

No. De Golpes	35	27	18	•
Recipiente No	14	63	13	
P1 gr.	51,44	42,18	52,62	
P2 gr.	44,15	36,04	44,61	
P3 gr.	13,02	10,83	13,12	
% Humedad	23,4%	24,4%	25,4%	

Límite Liquido % 24,60%

Límite Plástico %

18,22%


Indice de Plasticidad %

6,4%

LIMITE PLASTICO

Recipiente No	42	74	
P1 gr.	15,99	17,28	
P2 gr.	14,72	15,84	
P3 gr.	7,7	7,99	
% Humedad	18,09%	18,34%	-

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

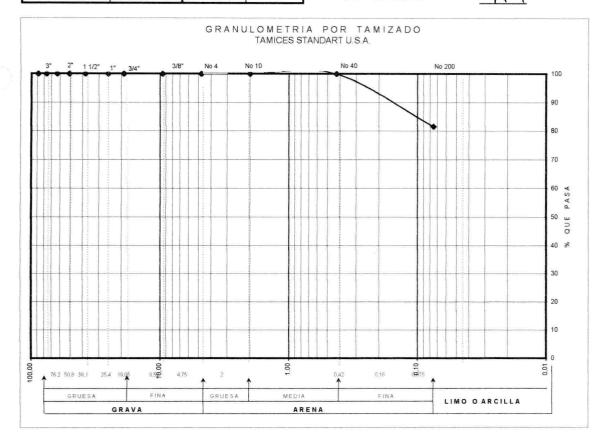
Firma:

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-02-01-03

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 03-Jun-04


 UBICACIÓN
 Carrera 17A Este
 MARGEN
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

GRADACION

1,25/2,00 m

	GRADACION			
P1=	278,7	P2=	51,1	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2"	0,0	0,0	100,0	
3"	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2"	0,0	0,0	100,0	
1 1/2"	0,0	0,0	100,0	
1*	0,0	0,0	100,0	
3/4"	0,0	0,0	100,0	
3/8*	0,0	0,0	100,0	
4	0,0	0,0	100,0	
10	0,0	0,0	100,0	
40	0,0	0,0	100,0	
200	51,1	18,3	81,7	
FONDO	227,6	81,7		

HUMED	AD NATURAL
P1	380
P2	340,1
P3	61,4
%HUM	14,3
Límite Liquido	26,90%
Límite Plástico	17,45%
Índice Plasticidad	9,5%
sección 13 (IDU)	dacion tipo A
Grava (%)	
Arena (%)	18,3
Finos (%)	81,7
Clasificacion U. S. C.	GL
Clasificacion AASHTO	A-4

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-01-03

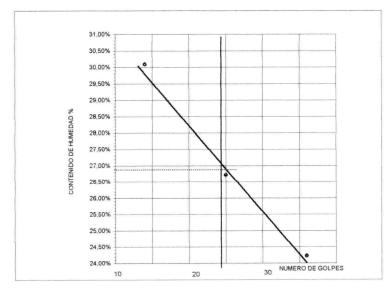
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 17A Este
 MARGEN
 DERECHO
 FECHA:
 03-Jun-04

 DESCRIPCION: SUELO NATURAL
 03-Jun-04
 03-Jun-04
 03-Jun-04
 03-Jun-04

LIMITE LIQUIDO No. De Golpes 36 14 Recipiente No 80 81 141 P1 gr. 23,68 29,15 30.33 P2 gr. 20,07 24,27 24,27 P3 gr. 5,17 6,01 4,13 % Humedad 24,2% 26,7% 30,1%

Límite Liquido % 26,90%


Límite Plástico % 17,45%

Indice de Plasticidad % 9,5%

LIMITE PLASTICO

Recipiente No	114	131	
P1 gr.	12,66	12,35	
P2 gr.	11,47	11,11	
P3 gr.	4,66	3,99	
% Humedad	17,47%	17,42%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FL -8

Tamiz 31/2" 3" 2" 1/2"

2"

1 1/2"

1" 3/4"

3/8"

4 10

40

200

FONDO

ANALISIS GRANULOMETRICO

C-259-4-02-02-01

OBRA: **UBICACIÓN** IDU-259-03

SECTOR:

SAN CRISTOBAL

FECHA

HUMEDAD NATURAL

03-Jun-04

PROF.:

Carrera 17A 0,00/0,20 m

MARGEN

IZQUIERDO

DESCRIPCION:

GRADACION 2.478,0

342,0

704,0

GRADACION		
2.478,0	P2=	1.774,0
Peso retenido	% Retenido	% Pasa

2932	P1
2794	P2
316,0	P3
M 5,6	%HUM

r eso reterillo	70 Neterildo	70 T dSd
0,0	0,0	100,0
0,0	0,0	100,0
0,0	0,0	100,0
0,0	0,0	100,0
386,0	15,6	84,4
150,0	6,1	78,4
70,0	2,8	75,5
206,0	8,3	67,2
228,0	9,2	58,0
204,0	8,2	49,8
188,0	7,6	42,2

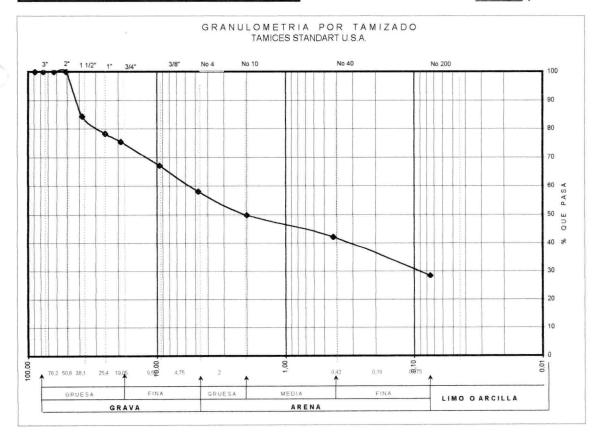
13,8

28,4

28,4

19,70% Límite Liquido Límite Plástico 14,19% Índice Plasticidad 5,5%

Especificación:


Gradacion tipo A

sección 13 (IDU)

Grava Arena (%) 42,0 29,6 28.4

Finos (%) Clasificacion U. S. C. Clasificacion AASHTO

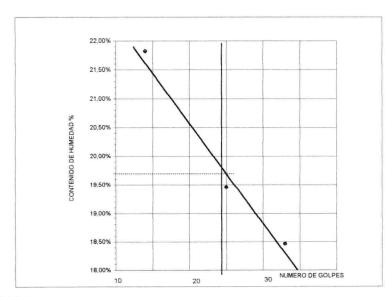
6H-6C

OBSERVACIONES:

FIRMA

FL -9 LIMITES Y CLASIFICACION C-259-4-02-02-01

OBRA:		IDU-259-03	SECTOR:	SAN CRISTOBAL	
UBICACIÓN	Carrera 17A	MARGEN	IZQUIERDO	FECHA:	03-Jun-04
DESCRIPCION	N: RECEBO				


LIMITE LIQUIDO No. De Golpes 33 14 Recipiente No 65 77 66 P1 gr. 56,42 51,58 53,46 P2 gr. 50,92 46,11 47,15 P3 gr. 21,13 18,00 18,24 % Humedad 18,5% 19,5% 21,8%

Límite Liquido %	19,70%
Límite Plástico %	14,19%
Indice de Plasticidad	%5,5%

LIMITE PLASTICO

Recipiente No	22	57	
P1 gr.	16,23	17,65	
P2 gr.	15,15	16,36	
P3 gr.	7,46	7,36	
% Humedad	14,04%	14,33%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

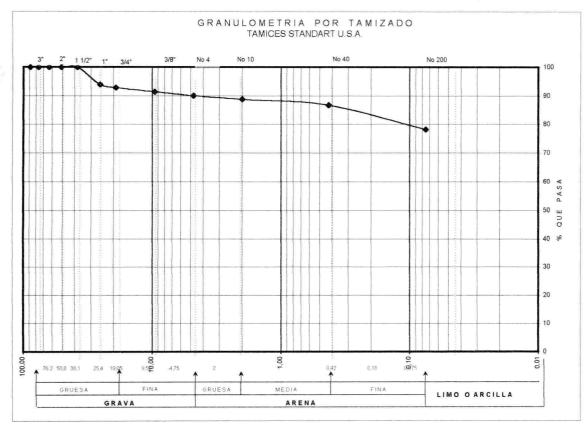
FL-8

PROF.:

A.C.I. PROYECTOS S.A.

ANALISIS GRANULOMETRICO C-259-4-02-02

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 03-Jun-04


 UBICACIÓN
 Carrera 17A
 MARGEN
 IZQUIERDO
 DESCRIPCION:
 SUELO NATURAL

GRADACION

0,20/2,00 m

P1= 445,4 P2= 97,0			
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1*	26,4	5,9	94,1
3/4"	5,1	1,1	92,9
3/8"	6,9	1,5	91,4
4	5,9	1,3	90,1
10	5,2	1,2	88,9
40	9,5	2,1	86,8
200	38,0	8,5	78,2
FONDO	348,4	78,2	

HUMEDA	D NATURAL
P1	578
P2	510
P3	64,6
%HUM	15,3
Limite Líquido	41,50%
Límite Plástico	21,75%
Índice Plasticidad	19,7%
Especificación: Grad sección 13 (IDU)	acion tipo A
Grava (%)	9,9
Arena (%)	11,8
Finos (%)	78,2
Clasificacion U. S. C.	CL
Clasificacion AASHTO	A-7-6

OBSERVACIONES:

FIRMA:

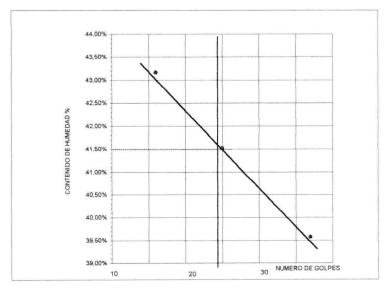
ingeniero

FL - 9 LIMITES Y CLASIFICACION C-259-4-02-02-02

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL
UBICACIÓN Carrera 17A MARGEN IZQUIERDO FECHA: 03-Jun-04
DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO No. De Golpes 37 16 Recipiente No 26 36 94 P1 gr. 35,05 39,65 35,90 P2 gr. 27,45 30,69 26,11 P3 gr. 8,05 7,10 5,4 % Humedad 39,6% 41,5% 43,2%

Límite Liquido % 41,50%


Límite Plástico % 21,75%

Indice de Plasticidad % 19,7%

LIMITE PLASTICO

Entri La La Contra de			
Recipiente No	38	67	
P1 gr.	26,68	26,27	
P2 gr.	23,12	22,73	
P3 gr.	6,82	6,39	
% Humedad	21,84%	21,66%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO

C-259-4-02-03-01

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 03-Jun-04


 UBICACIÓN
 Carrera 17A Este
 MARGEN
 EJE
 DESCRIPCION:
 SUELO NATURAL

 PROF.:
 0,00/1,25 m

GRADACION

2.378,0	P2=	1.200,
Peso retenido	% Retenido	% Pasa
0,0	0,0	100,0
0,0	0,0	100,0
0,0	0,0	100,0
0,0	0,0	100,0
0,0	0,0	100,0
262,0	11,0	89,0
176,0	7,4	81,6
74,0	3,1	78,5
44,0	1,9	76,6
42,0	1,8	74,9
88,0	3,7	71,2
514,0	21,6	49,5
1.178,0	49,5	
	Peso retenido 0,0 0,0 0,0 0,0 0,0 262,0 176,0 74,0 44,0 42,0 88,0 514,0	Peso retenido % Retenido 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 262,0 11,0 176,0 7,4 74,0 3,1 44,0 1,9 42,0 1,8 88,0 3,7 514,0 21,6

HUMED	AD NATURAL
P1	2930
P2	2570
P3	192,0
%HUM	15,1
Limite Líquido	31,80
ímite Plástico	21,29
indice Plasticidad	10,59
Especificación: Gra sección 13 (IDU) Grava (%)	dacion tipo A
vrena (%)	27,
inos (%)	49,5
Clasificacion U. S. C.	C
Clasificacion AASHTO	A-

OBSERVACIONES:

Justine Jeogechologof

FIRMA:

FL - 9 LIMITES Y CLASIFICACION C-259-4-02-03-01

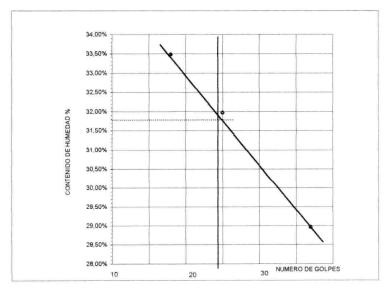
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 17A Este
 MARGEN
 EJE
 FECHA:
 03-Jun-04

 DESCRIPCION: SUELO NATURAL
 03-Jun-04
 03-Jun-04
 03-Jun-04
 03-Jun-04

LIMITE LIQUIDO No. De Golpes 37 18 Recipiente No 33 100 34 P1 gr. 60,95 47,59 50,86 P2 gr. 48,91 37,28 39,83 P3 gr. 7,34 5,04 6,89 % Humedad 29,0% 32,0% 33,5%

Límite Liquido % 31,80%


Límite Plástico % 21,29%

Indice de Plasticidad % 10,5%

LIMITE PLASTICO

211111212101100			
Recipiente No	30	32	
P1 gr.	17,34	17,76	
P2 gr.	15,70	15,92	
P3 gr.	8,01	7,26	
% Humedad	21,33%	21,25%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

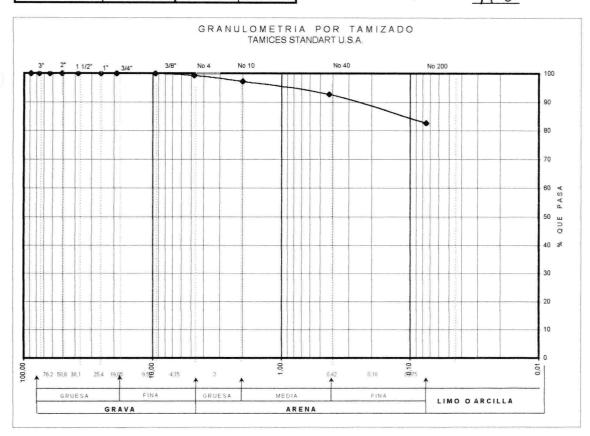
Firma:

Firma:

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-02-03-02


 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 03-Jun-04

 UBICACIÓN
 Carrera 17A Este
 MARGEN
 EJE
 DESCRIPCION:
 SUELO NATURAL

1,25/2,00 m G R A D A C I O N

GRADACION			
P1=	1.533,1	P2=	265,3
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	9,9	0,6	99,4
10	31,7	2,1	97,3
40	68,3	4,5	92,8
200	155,4	10,1	82,7
FONDO	1.267,8	82,7	

HUN	IEDAD NATU	JRAL
P1	1842	
P2	1638	
P3	104,9	
%HUM	13,3	
Limite Liquido		34,80%
Límite Plástico		18,24%
Índice Plasticidad		16,6%
Especificación: sección 13 (IDU)	Gradacion tipo	А
Grava (%)		0,6
Arena (%)		16,7
Finos (%)		82,7
Clasificacion U. S. C.		CL
Clasificacion AASHTO	,	A-6

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

MARGEN

C-259-4-02-03-02

OBRA: UBICACIÓN Carrera 17A Este IDU-259-03

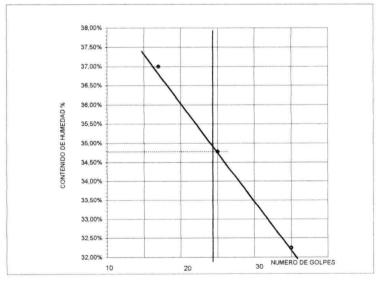
SECTOR: SAN CRISTOBAL

FECHA:

03-Jun-04

DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO


LIMITE LIQUIDO				
No. De Golpes	35	25	17	
Recipiente No	50	68	61	
P1 gr.	51,23	39,97	42,56	
P2 gr.	40,49	31,50	32,81	
P3 gr.	7,18	7,15	6,46	
% Humedad	32,2%	34,8%	37,0%	
	,			

Límite Liquido % 34,80% Límite Plástico % 18,24% Indice de Plasticidad % 16,6%

LIMITE PLASTICO

Recipiente No	113	119	
P1 gr.	14,02	12,77	
P2 gr.	12,52	11,45	
P3 gr.	4,31	4,20	
% Humedad	18,27%	18,21%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

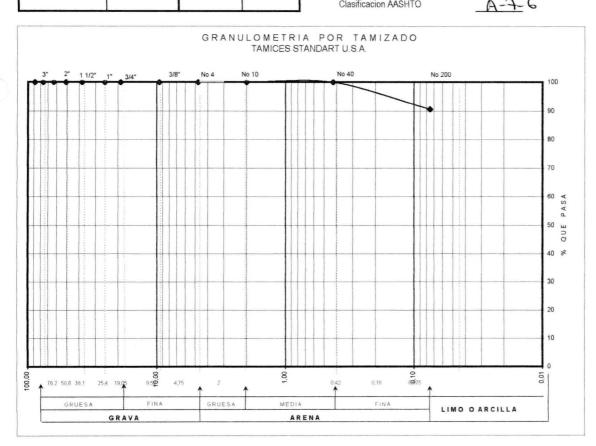
Firma:

Firma:

.FL-8 ANALISIS GRANULOMETRICO

C-259-4-02-04-01

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 03-Jun-04


 UBICACIÓN
 Calle 42C Sur No. 1 MARGEN
 DESCRIPCION:
 SUELO NATURAL

 PROF.:
 0,00/0,20 m

GRADACION

OKADAGION			
P1=	367,9	P2=	34,4
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1*	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	34,4	9,4	90,6
FONDO	333,5	90,6	

		OLLO 141 (1 O1 O1L
ши	IEDAD NATU	IDAI
P1	586	IRAL
P2	474	
P3	106,1	
%HUM	30,4	
Limite Liquido		44,20%
Límite Plástico		25,30%
Índice Plasticidad		18,9%
Especificación: sección 13 (IDU)	Gradacion tipo	A A
Grava (%)	2	0,0
Arena (%)		9,4
Finos (%)		90,6
Clasificacion U. S. C.		CL
Clasificacion AASHTO		4-1-6

OBSERVACIONES:

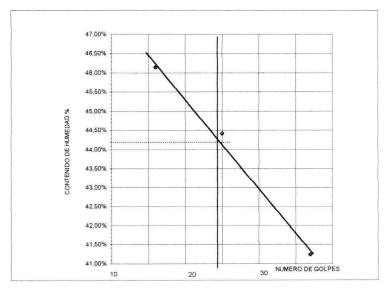
FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-04-01

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL UBICACIÓN Calle 42C Sur No. 16B - 93 E MARGEN FECHA: 03-Jun-04 DESCRIPCION: SUELO NATURAL


> LIMITE LIQUIDO No. De Golpes 37 16 95 31 19 31,95 36,33 35,15

Recipiente No P1 gr. P2 gr. 24,21 27,62 26,41 P3 gr. 5.44 8,01 7.47 41,2% % Humedad 44,4% 46,1% Límite Liquido % 44,20% 25,30% Límite Plástico % 18,9% Indice de Plasticidad %

LIMITE PLASTICO

Recipiente No	41	51	7
P1 gr.	19,40	19,79	
P2 gr.	16,71	17,18	
P3 gr.	6,10	6,84	
% Humedad	25,35%	25,24%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

-FL-8 ANALISIS GRANULOMETRICO C-259-4-02-04-02

SECTOR:

OBRA: IDU-259-03 **UBICACIÓN**

SAN CRISTOBAL

03-Jun-04

PROF.:

Calle 42C Sur No. 1 MARGEN 0,20/0,70 m

DESCRIPCION:

SUELO NATURAL

GRADACION

P1=	504,0	P2=	1,4
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	1,4	0,3	99,7
FONDO	502,6	99,7	## ## ## ## ## ## ## ## ## ## ## ## ##

HUMEDAD NATURAL

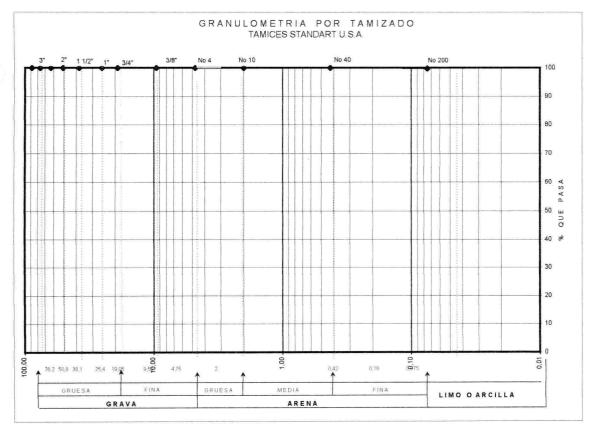
P1 732 P2 618 P3 114,0 %HUM 22,6

FECHA

Limite Liquido 50,90% Límite Plástico 26,06% Índice Plasticidad 24,8%

Especificación:

Gradacion tipo A


sección 13 (IDU)

Grava (%) Arena Finos (%)

0,3 99,7

0,0

Clasificacion U. S. C. Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-04-02

OBRA:

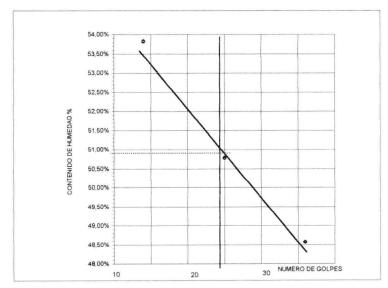
IDU-259-03

SECTOR: SAN CRISTOBAL

UBICACIÓN Calle 42C Sur No. 16B - 93 EMARGEN

FECHA: 03-Jun-04

DESCRIPCION: SUELO NATURAL


LIMITE LIQUIDO No. De Golpes 36 14 Recipiente No 146 111 96 P1 gr. 25,35 29,98 24,17 P2 gr. 17,7 18,52 21,39 P3 gr. 5,07 5,43 4,38 % Humedad 48,6% 50,8% 53,8%

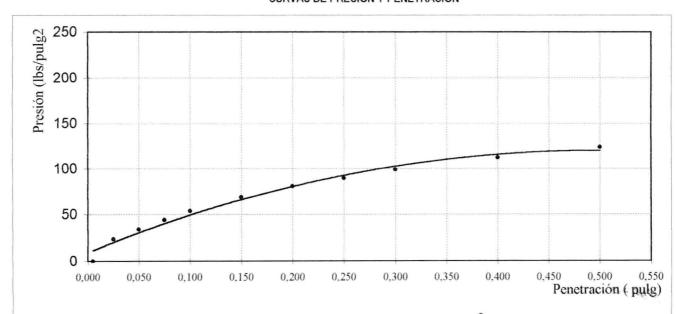
Limite Liquido % 50,90% Límite Plástico % 26,06% 24,8% Indice de Plasticidad %

LIMITE PLASTICO

Recipiente No	68	135	
P1 gr.	13,86	14,06	
P2 gr.	12,25	12,05	
P3 gr.	6,01	4,41	
% Humedad	25,80%	26,31%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

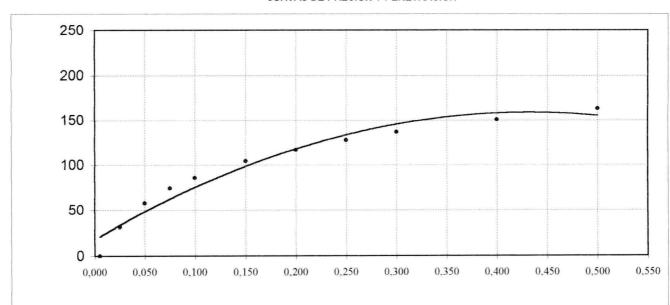
OBSERVACION


Firma:

Firma:

FL - 20	ENSAYO DE CBR INALTERADO						C-259-	4-02-04-02	
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL		FECHA	:	09-Jun-04	
MARGEN:			PROF. m.	0,20/0,70 m		CBR:		1	
UBICACIÓN	(BARRENO	4		MUES	TRA	2	
Molde No.		5 SATUR	ADO				PESO UNITARIO		
Lectura de expansión inicial	0				P-mues	stra gr			
Lectura de expansión 1er día	16						stra c.c	•	
Lectura de expansión 2er día	32						Λ.		
Lectura de expansión 3er día	44					DEN,S	EC gr/cc		
Lectura de expansión 4er día		58							
Expansión total %		1,2							
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.						
0,005	0	0,00	0,00						
0,025	32,00	70,55	23,52						
0,050	46,00	101,41	33,80						
0,075	60,00	132,28	44,09						
0,100	73,00	160,94	53,65						
0,150	94,00	207,23	69,08						
0,200	110,00	242,51	80,84						
0,250	122,00	268,96	89,65						
0,300	135,00	297,62	99,21						
0,400	153,00	337,31	112,44						
0,500	168,00	370,38	123,46						
Humedad de penetr. %	25,2%								
CBR Correg. a 01	5,36								
CBR Correg. a 02	5,39								

CURVAS DE PRESION Y PENETRACION


GEOTECNOLOGO

INGENIERO

FL - 20	ENSAYO DE CBR INALTERADO					C-259-4	-02-04-02
PROYECTO:	IDU-259-2003 S		SECTOR	SECTOR SAN CRISTOBAL		FECHA:	
MARGEN:			PROF. m.	0,20/0,70 m	CBF	₹:	1
UBICACIÓN			BARRENO	4	MUE	STRA	2
Molde No.		5 SIN SATURAR		T		PESO UN	ITARIO
Lectura de expansión inicial	0				P-m	uestra gr	130,6
Lectura de expansión 1er día		0				nuestra c.c	89,03
Lectura de expansión 2er día		0			% H	UM.	22,6
Lectura de expansión 3er día		0			DEN	I,SEC gr/cc	1,196
Lectura de expansión 4er día		0					
Expansión total %		0,0					-
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				
0,005	0	0,00	0,00				
0,025	43,00	94,80	31,60				
0,050	79,00	174,16	58,05				
0,075	101,00	222,67	74,22				
0,100	117,00	257,94	85,98				
0,150	142,00	313,06	104,35				
0,200	159,00	350,53	116,84				
0,250	174,00	383,60	127,87				
0,300	186,00	410,06	136,69				
0,400 ·	205,00	451,95	150,65				
0,500	222,00	489,43	163,14				
Humedad de penetr. %	22,6%						
CBR Correg. a 01	8,60						
CBR Correg. a 02	7,79						

CURVAS DE PRESION Y PENETRACION

Sufere of Second Constant of the Constant of t

INGENIERO

FL-8

ANALISIS GRANULOMETRICO

C-259-4-02-04-03

03-Jun-04

OBRA:

IDU-259-03

SECTOR:

SAN CRISTOBAL

FECHA

UBICACIÓN PROF.: Calle 42C Sur No. 1 MARGEN 0,70/2,00 m

DESCRIPCION:

SUELO NATURAL

GRADACIO

P1=	428,4	P2=	1,4
Tamiz	Peso retenido	% Retenido	% Pasa
31/2*	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	1,4	0,3	99,7
FONDO	427,0	99,7	
		1	

HUMEDAD NATURAL

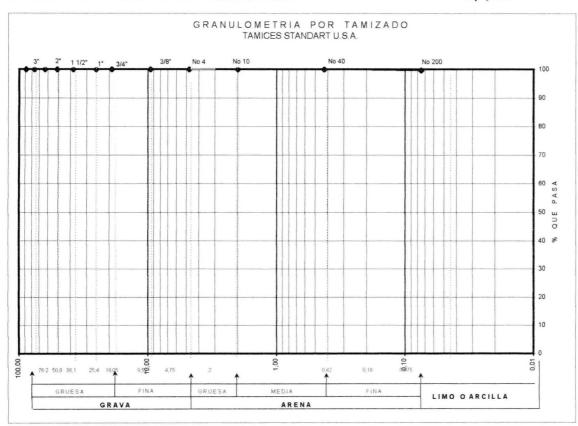
P1 596 P2 536 P3 107,6 %HUM 14,0

 Limite Liquido
 39,30%

 Limite Plástico
 22,44%

 Índice Plasticidad
 16,9%

Especificación:


Gradacion tipo A

sección 13 (IDU)

Grava (%)
Arena (%)
Finos (%)

0,0 0,3 99,7

Clasificacion U. S. C. Clasificacion AASHTO CL A-6

OBSERVACIONES:

FIRMA:

43,6%

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-04-03

OBRA:

IDU-259-03

% Humedad

SECTOR: SAN CRISTOBAL

UBICACIÓN Calle 42C Sur No. 16B - 93 EMARGEN

FECHA:

03-Jun-04

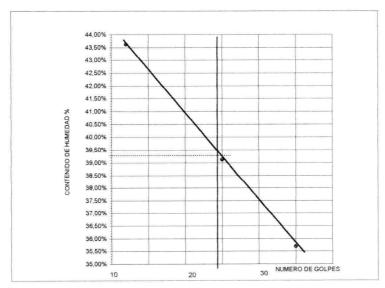
DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO No. De Golpes 35 12 Recipiente No 62 107 150 P1 gr. 30,85 38,75 31,15 P2 gr. 24,34 29,27 23,01 P3 gr. 6,10 5,04 4,35

39,1%

Límite Liquido % 39,30%

Límite Plástico % 22,44%


Indice de Plasticidad % 16,9%

LIMITE PLASTICO

35,7%

	IIVII I E IO II O	0	
Recipiente No	27	60	
P1 gr.	17,94	16	
P2 gr.	15,96	14,18	
P3 gr.	7,15	6,06	
% Humedad	22,47%	22,41%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

31/2"

3"

2" 1/2"

2"

1 1/2"

1"

3/4"

3/8"

4

10

40

200

FONDO

OBRA:

P1=

A.C.I. PROYECTOS S.A.

ASSTRUTO DE DESARROLLO URBANO

FL-8 ANALISIS GRANULOMETRICO C-259-4-02-05-01 o Documentación

293,6

% Pasa

100.0

100,0

100.0

100.0

100,0

100.0

100,0

100,0

100.0

99.8

99,2

76,6

IDU-259-03 SECTOR: **UBICACION** Calle 42C Sur No. 1 MARGEN

% Retenido

0.0

0,0

0.0

0.0

0,0

0,0

0,0

0,0

0.0

0,2

0,6

22,6

76,6

PROF.: 0,00/0,20 m DESCRIPCION:

SAN CRISTOBAL

SUELO NATURAL

GRADACION

1.256,0

Peso retenido

0.0

0.0

0.0

0.0

0,0

0,0

0,0

0,0

0.0

2,0

7,7

283,9

962,4

HUMEDAD NATURAL

FECHA

1598 P2 1372 P3 116,0

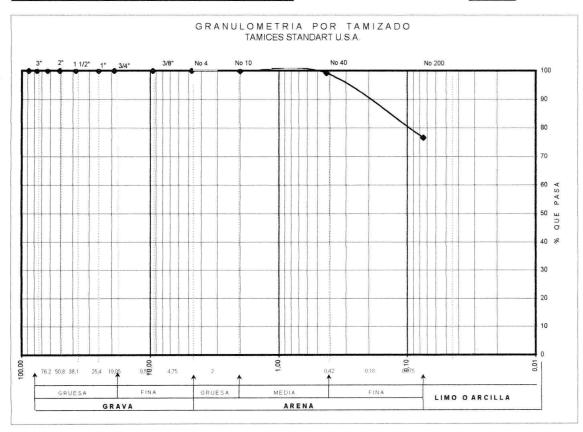
%HUM 18,0

Límite Líquido 37,00% Límite Plástico 20,33% Índice Plasticidad 16,7%

Especificación:

Gradacion tipo A

sección 13 (IDU)


Grava (%) Arena (%) Finos (%)

23,4 76,6

0,0

Clasificacion U. S. C. Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

FL - 9 LIMITES Y CLASIFICACION C-259-4-02-05-01

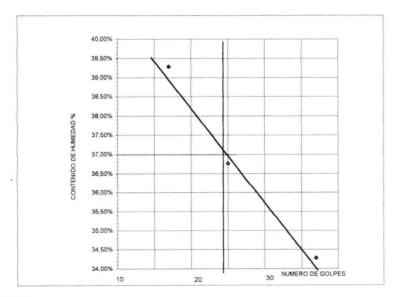
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Calle 42C Sur No. 16B - 57 E MARGEN
 FECHA:
 03-Jun-04

 DESCRIPCION: SUELO NATURAL
 OS-Jun-04
 OS-Jun-04

LIMITE LIQUIDO No. De Golpes 37 25 17 Recipiente No 35 122 59 P1 gr. 48.63 40.47 43.87 P2 gr. 30.71 37.9 33,95 P3 gr. 6,60 4,16 8,7 % Humedad 34,3% 36,8% 39,3%

Limite Liquido % 37,00%


Limite Plástico % 20,33%

Indice de Plasticidad % 16,7%

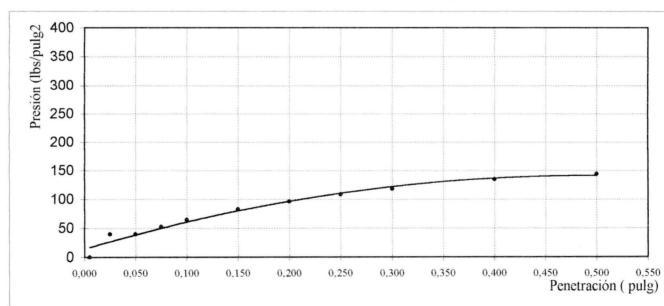
LIMITE PLASTICO

Recipiente No	24	25	
P1 gr.	14,55	14,62	
P2 gr.	13,42	13,45	
P3 gr.	7,80	7,76	
% Humedad	20,11%	20,56%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

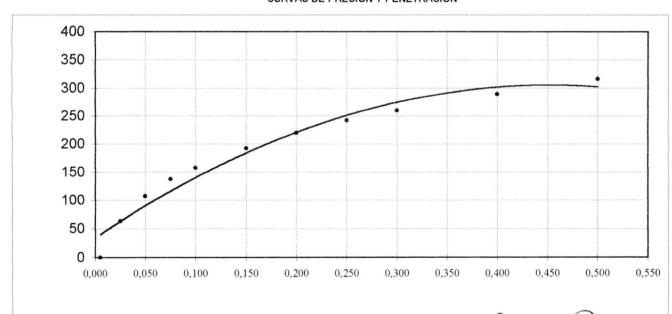
Firma:


Firma:

Ingeniero -

FL - 20	ENSAYO DE CBR INALTERADO						C-259-	4-02-05-01
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL		FECHA	:	09-Jun-04
MARGEN:			PROF. m.	0,00/0,50 m		CBR:		1
UBICACIÓN			BARRENO	5		MUES	TRA	1
Molde No.	3 SATURADO		ADO			<u> </u>	PESO UN	ITARIO
Lectura de expansión inicial	0				P-mue	stra gr		
Lectura de expansión 1er día	68						estra c.c	
Lectura de expansión 2er día	74						И.	
Lectura de expansión 3er día		77				DEN,S	EC gr/cc	
Lectura de expansión 4er día		81						
Expansión total %		1,6						
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.					
0,005	0	0,00	0,00					
0,025	54,00	119,05	39,68					
0,050	54,00	119,05	39,68					
0,075	71,00	156,53	52,18					
0,100	87,00	191,80	63,93					
0,150	112,00	246,92	82,31					
0,200	130,00	286,60	95,53					
0,250	147,00	324,08	108,03					
0,300	160,00	352,74	117,58					
0,400	183,00	403,45	134,48					
0,500	196,00	432,11	144,04					
Humedad de penetr. %	22,2%							
CBR Correg. a 01	6,39							
CBR Correg. a 02	6,37							1

CURVAS DE PRESION Y PENETRACION


GEOTECNOLOGO

INGENIERO ·

FL - 20		ENSA	YO DE CBR	INALTERADO		C-25	9-4-02-05-01
PROYECTO:	DU-259-2003		SECTOR	SAN CRISTOBAL		FECHA:	09-Jun-04
MARGEN:			PROF. m.	0,00/0,50 m		CBR:	1
UBICACIÓN _			BARRENO	5		MUESTRA	1
Molde No.		3 SIN SATURAR		T		PESO	UNITARIO
Lectura de expansión inicial		0				P-muestra gr	210,1
Lectura de expansión 1er día		0				V- muestra c.c	128,3
Lectura de expansión 2er día		0				% HUM.	18,0
Lectura de expansión 3er día		0				DEN,SEC gr/c	1,388
Lectura de expansión 4er día		0					
Expansión total %		0,0					
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				
0,005	0	0,00	0,00				
0,025	86,00	189,60	63,20				
0,050	146,00	321,87	107,29				
0,075	187,00	412,26	137,42				
0,100	214,00	471,79	157,26				
0,150	261,00	575,41	191,80				
0,200	299,00	659,18	219,73				
0,250	329,00	725,32	241,77				
0,300	353,00	778,23	259,41				
0,400	394,00	868,62	289,54				
0,500	430,00	947,99	316,00				
Humedad de penetr. %	18,0%						
CBR Correg. a 01	15,73						
CBR Correg. a 02	14,65						

CURVAS DE PRESION Y PENETRACION

GEOTECNOLOGO

INGENIERO

FL-8 ANALISIS GRANULOMETRICO C-259-4-02-05-02

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** UBICACIÓN Calle 42C Sur No. 1 MARGEN EJE DESCRIPCION: SUELO NATURAL PROF.: 0,20/2,00 m

GRADACION

P1=	1.841,5	P2=	259,5
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4*	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	30,1	1,6	98,4
10	67,1	3,6	94,7
40	56,3	3,1	91,7
200	200 106,0		85,9
FONDO	1.582,0	85,9	

HUMEDAD NATURAL P1 2228 P2 1954 P3 112,5 %HUM 14,9 Limite Liquido 39,90% Límite Plástico 20.34% Índice Plasticidad 19,6% Especificación: Gradacion tipo A sección 13 (IDU) 1,6 Grava (%) 12,5 Arena (%) 85,9 Finos (%) Clasificacion U.S.C. Clasificacion AASHTO

03-Jun-04

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-05-02

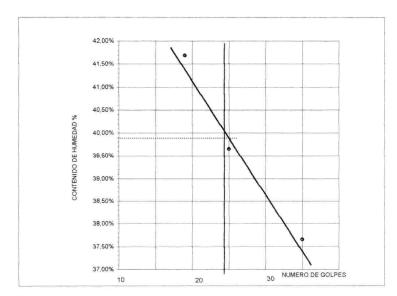
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Calle 42C Sur No. 16B - 57 E MARGEN
 FECHA:
 03-Jun-04

 DESCRIPCION:
 SUELO NATURAL
 O3-Jun-04

LIMITE LIQUIDO No. De Golpes 25 35 19 Recipiente No 2 17 18 P1 gr. 48,37 46,14 43,03 P2 gr. 38,97 36,83 34,35 P3 gr. 14.01 13,35 13,53 % Humedad 37,7% 39,7% 41,7%

 Límite Liquido
 %
 39,90%


 Límite Plástico
 %
 20,34%

 Indice de Plasticidad
 %
 19,6%

LIMITE PLASTICO

Recipiente No	38	67	
P1 gr.	14,72	14,7	
P2 gr.	13,39	13,29	
P3 gr.	6,82	6,39	
% Humedad	20,24%	20,43%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

few fund

Firma:

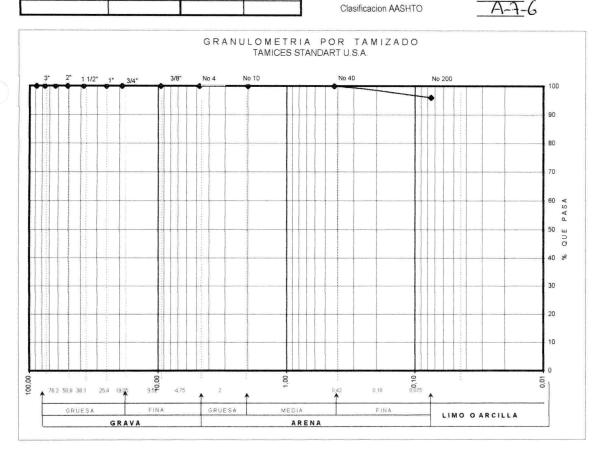
PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-02-06-01

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 03-Jun-04 **UBICACIÓN** Calle 42C Sur No. 1 MARGEN DESCRIPCION: SUELO NATURAL

0,00/0,70 m


	G	R	A	D	A	C	10	١
--	---	---	---	---	---	---	----	---

P1=	369,4	P2=	14,
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2*	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4*	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	14,4	3,9	96,1
FONDO	355,0	96,1	
FONDO	355,0	96,1	

HUMEDAD NATURAL P1 P2 484 P3 114,6 %HUM 14,1 Limite Liquido 44,60% Limite Plástico 21,79% Índice Plasticidad 22,8% Especificación: Gradacion tipo A sección 13 (IDU) 0.0 Grava (%) 3.9 Arena (%) 96,1 Finos (%)

Clasificacion U.S.C.

Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-02-06-01

OBRA:

IDU-259-03

SECTOR: SAN CRISTOBAL

FECHA:

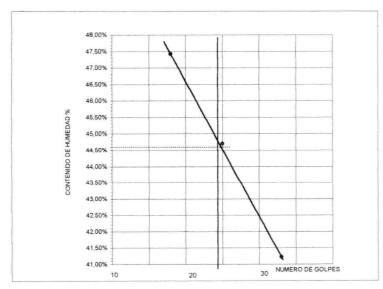
03-Jun-04

UBICACIÓN Calle 42C Sur No. 16B - 18 E MARGEN
DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO

LIMITE LIGOIDO						
33	25	18				
49	85	108				
45,45	45,19	41,80				
34,31	33,02	29,99				
7,29	5,80	5,09				
41,2%	44,7%	47,4%				
	33 49 45,45 34,31 7,29	49 85 45,45 45,19 34,31 33,02 7,29 5,80				

 Límite Liquido
 %
 44,60%


 Límite Plástico
 %
 21,79%

 Indice de Plasticidad
 %
 22,8%

LIMITE PLASTICO

Recipiente No	46	152	
P1 gr.	15,51	15,29	
P2 gr.	13,90	13,39	
P3 gr.	6,65	4,50	
% Humedad	22,21%	21,37%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

Ingeniero •

• FL-8

ANALISIS GRANULOMETRICO

SECTOR:

C-259-4-02-06-02

OBRA: UBICACIÓN PROF.:

IDU-259-03

Calle 42C Sur No. 1 MARGEN 0,70/2,00 m

SAN CRISTOBAL DESCRIPCION:

FECHA

03-Jun-04

SUELO NATURAL

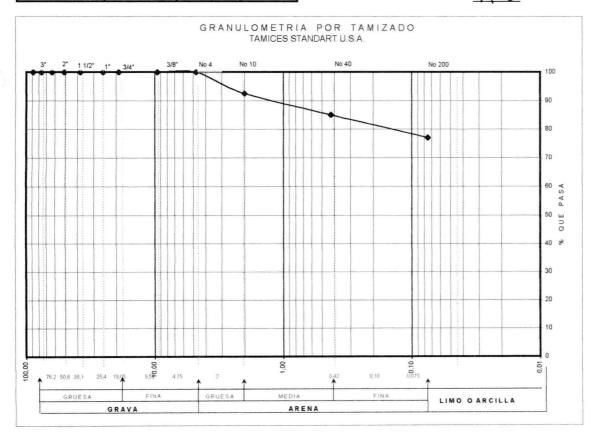
GRADACION

CHADACION						
277,5	P2=	6				
Peso retenido	% Retenido	% Pasa				

P1=	277,5	P2=	63,4	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2"	0,0	0,0	100,0	
3*	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2"	0,0	0,0	100,0	
1 1/2*	0,0	0,0	100,0	
1*	0,0	0,0	100,0	
3/4"	0,0	0,0	100,0	
3/8"	0,0	0,0	100,0	
4	0,0	0,0	100,0	
10	20,7	7,5	92,5	
40	20,5	7,4	85,1	
200	22,2	8,0	77,1	
FONDO	214,1	77,1		
L		1		

HUMEDAD NATURAL

P1 P2 310,1 32,6 %HUM 15,1


Limite Liquido 36,75% Límite Plástico 19,83% Índice Plasticidad 16,9%

Especificación:

Gradacion tipo A

sección 13 (IDU)

0,0 Grava (%) 22,9 Arena (%) 77,1 Finos (%) Clasificacion U. S. C. Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

FL-9

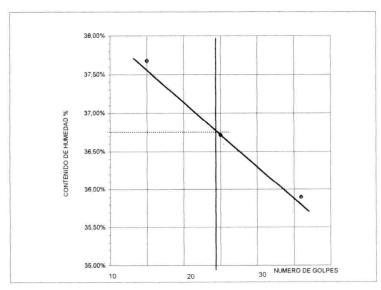
LIMITES Y CLASIFICACION

C-259-4-02-06-02

OBRA: IDU-259-03 UBICACIÓN Calle 42C Sur No. 16B - 18 EMARGEN SECTOR: SAN CRISTOBAL FECHA:

03-Jun-04

DESCRIPCION: SUELO NATURAL


LIMITE LIQUIDO						
No. De Golpes	36	25	15			
Recipiente No	105	88	28			
P1 gr.	42,54	45,98	46,34			
P2 gr.	32,65	35,19	35,81			
P3 gr.	5,10	5,80	7,86			
% Humedad	35,9%	36,7%	37,7%			

Limite Liquido % 36,75% Límite Plástico % 19,83% Indice de Plasticidad % 16,9%

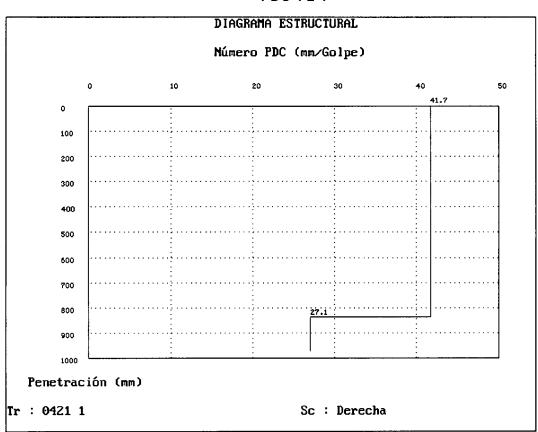
LIMITE PLASTICO

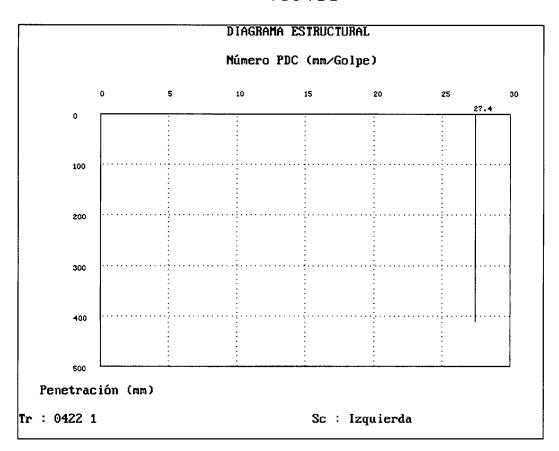
Recipiente No	117	124	
P1 gr.	10,35	9,94	
P2 gr.	9,39	9,00	
P3 gr.	4,60	4,21	
% Humedad	20,04%	19,62%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

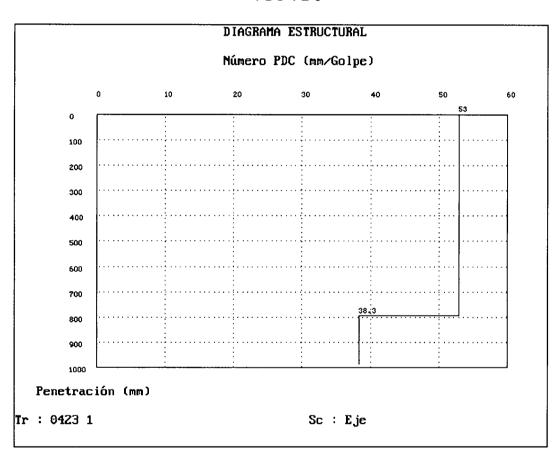
OBSERVACION

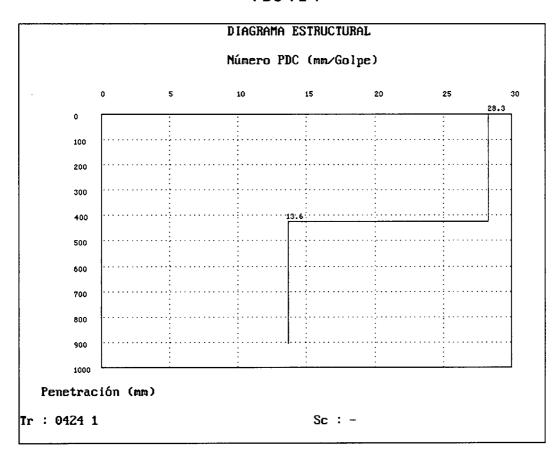
Firma:

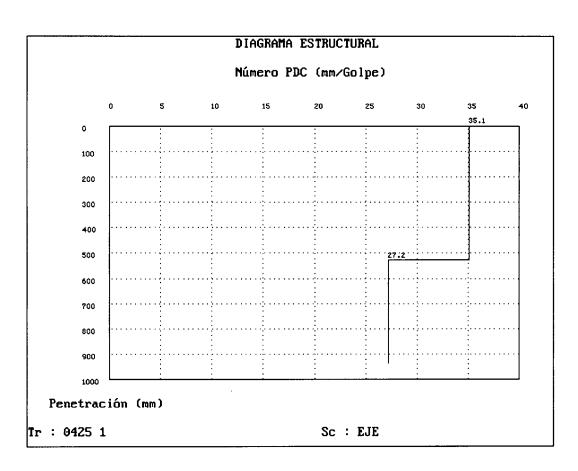


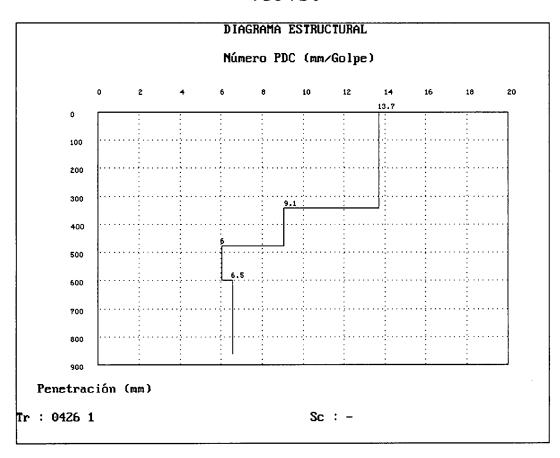

ENSAYOS DE PENETRACIÓN CON CONO

MOVILIDAD
Instituto de Desarrollo Urbano


PDC 4-2-1


PDC 4-2-2


PDC 4-2-3


PDC 4-2-4

PDC 4-2-5

PDC 4-2-6

PORTLAND CEMENT ASSOCIATION METHOD

Modulus of Rupture Thickness Modulus of Elasticity	MR				
Thickness	MR				
Thickness	IVII	41.00	kg/cm2	583,16	psi
27318 AZ VP 124402	Н	19,00		7,48	in
Modulus of Elasticity	E1	273000		3.900.000	psi
Unit Weight	WT		kg/m3	133	pcf
Coef. of Thermal expansion	CT	3,60E-06		2,00E-06	/°F
Poisson's ratio		0,15	10		/ F
Radius of Relative Stiffness	u		0m	0,15	in
The state of the second	0)/	73,90	CITI	29,09	in
Coefficient of Variation	CV	0,15		0,15	
ENT DATA		ALC: NO			_30
Total Width	Tw	3,50	m	11,48	ft
Numbers of Lanes	NI	1,00		3,28	ft
Width Lane	W	3,66		12,01	ft
Slab Length	SI	3,50		11,48	ft
Concrete Shoulders	Sh	No			11
Doweled Joints	Dj	Yes		(yes or no) (yes or no)	
Tie Bars	Tb	Yes		es or no)	
Annual Growth Rate	Tca		%	0	%
Desing Period	Dp		Years	20	Year
Drying Shrinkage Coefficient	Lse	0,0002	1 Cai 3	0,0002	1 Cai
Drying criminage comment	200	0,0002		0,0002	
ATION PAVEMENT STRUCTUR	RE				
C.B.R.	CBR	5,00	%	5,00	%
K on Top off Sub Base	K	5,39	k/cm2	194,21	pci
	Untreated	or Treated) =	Tı	reated	•
	Depth	,	cm		in
Elastic N			k/cm2		psi
Treated Sub Base	Depth	20	cm	7,87	in
Elastic N			k/cm2	50000,00	psi
Coefficient of Friction Between	Sub Bas	e and Slab		0,65	
MENTAL DATA					
Mean Annual Wind Speed		10,00	kph	6,22	mph
		17,00	°C	62,60	°F

PORTLAND CEMENT ASSOCIATION METHOD

									PCA 1984
AXLE	BY LSF			CON	ICRETE FATIGUE ANA	LISYS	CON	ICRETE EROSION ANALIS	SYS
LOAD kips	LSF 1,10	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %
	Ruputu	re Module	583,2	Sum of	Single Fatigue	91,54%		Sum of erosion Fatigue	3,50%
	Trial T	hickness	7,48	Sub Bas	se Subgrade K	194,21	Erosion	Doweled Joints	Yes
	Dowel	ed Joints	Yes	Concre	ete Shoulders	No	Line belief	Concrete Shoulders	No
SINGLE A	AXLES			S. 18 18 18					
19,80	21,78	318	131.400	0,545	143.542	91,5%	27,86	3.758.142	3,5%
Portland	Cement As	sociation M	lethod						PCA 1984
AXLE	BY LSF			CON	ICRETE FATIGUE ANA	LISYS	CON	ICRETE EROSION ANALIS	SYS
LOAD	LSF	TOTAL	EXPECTED	CONCRETE	ALLOWABLE	FATIGUE	CONCRETE	ALLOWABLE	DAMAGE
kips	1,10	STRESS psi	REPETITIONS	STRESS RATIO	REPETITIONS N	PERCENT %	POWER FACTOR	REPETITIONS N	PERCENT %
, inpo	Ruputu	re Module	583,2	Sum of	Single Fatigue	0.00%	1	Sum of erosion Fatigue	0,00%
	ATT THE PERSON			1000			Erosion		The Market
	Charlet and					7 5 5 10 10 10			STATE OF
TANDEM	AXLES						1307 WH T.		
***	-					0,0%	-	Unlimited	0,0%
				Tota	al Concrete Fatigue =	91,5%		Total Erosion Fatigue =	3,5%

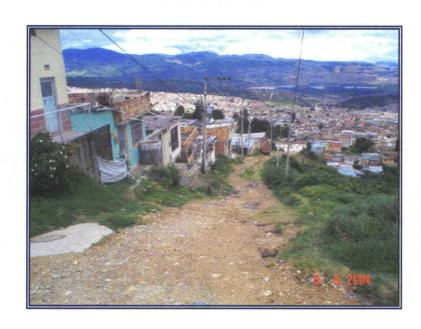
VÍA 04-02

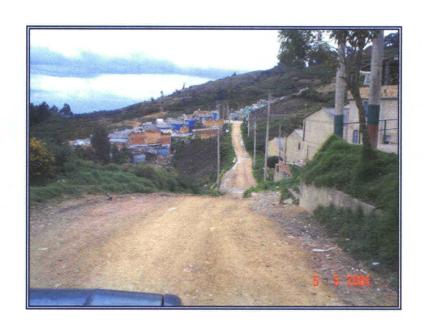
DISEÑO DE PAVIMENTO MÉTODO AASHTO

R	90%
Z _R	-1,282
So	0,45
Po	4,2
Pf	2,5
SN	3,1
Módulo de la subrasante (psi)	7500
N requerido	5,00E+05
N admisble	5,01E+05

COEFICIENTES DE CAPA				
CONCRETO ASFÁLTICO	0,35			
BASE ESTABILIZADA CON CEMENTO	0,18			
SUBBASE GRANULAR	0,11			

COEFICIENTES DE CAPA	Α
CONCRETO ASFÁLTICO	0,35
BASE ESTABILIZADA CON CEMENTO	1,00
SUBBASE GRANULAR	1,00


CAPA	ESPESOR (cm)
CONCRETO ASFÁLTICO	7,5
BASÉ ESTABILIZADA CON CEMENTO	15,0
SUBBASE GRANULAR	24,0
SN	3,1



VIA 4-2

INSTITUTO DE DESARROLLO URBANO I. D. U.

ESTUDIOS Y DISEÑOS PARA LA CONSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES - PROGRAMA DE PAVIMENTOS LOCALES GRUPO 2

CONTRATO No. IDU-259 DE 2003

ESTUDIO GEOTECNICO PARA EL DISEÑO DE PAVIMENTOS (VIA MORALBA)

IDU-259-GT-E- 4-3 MORALBA (PPL 2004)

NOVIEMBRE 22 DE 2004

·	VERSION 0.0	
	Vigente desde: 22/11/04	
ELABORO: Ing. Francisco Cervantes FECHA: Noviembre 22 de 2.004	REVISO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004	APROBO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004
Flags lev. to	FIRMA:	FIRMA: ULU
CARGO: Ing. Especialista	CARGO: Director de Estudios y Diseños	CARGO: Director de Estudios y Diseños

FQ14

CONTROL DE CAMBIOS DE DOCUMENTOS

IDENTIFICACIÓN DEL DOCUMENTO						
ELABORACIÓN MODIFICACIÓN	ANULACIÓN					
NOMBRE: JAIRO GARCIA POLO CARGO: DIRECTOR DE INTERVENTORIA	SUGIERE EL CAMBIO					
JUSTIFICACIÓN DI	EL CAMBIO					
CONTRATO: IDU-259-03						
DOCUMENTO: IDU-259-GT-E- 4-3 MO RALBA VERSION: 0.0						
ACEPTADO EL CAMBIO?	SI NO					
RESUMEN DEL CAMBIO O RAZÓN PA	ARA NO ACEPTAR EL CAMBIO					
,						
FIRMA DIRECTOR DE CALIDAD O ENCARGADO DEL PROYECTO	FIRMA TITULAR DEL CARGO QUE APROBÓ EL PROCEDIMIENTO INICIAL					

FQ25-259-3

LISTA DE CHEQUEO DISEÑOS

PROYECTO:	ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2	HOJA DE

ESPECIALIDAD: ESTUDIOS DE SUELOS

DOCUMENTO: IDU-259-GT-E -4-3 MOCALDA

	REV. No	0.0 NO CUMPLE	OBSERVACIONES	REV. No	NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer las necesidades del Cliente)						
CRITERIOS DE REVISION:						
Se realizó el inventario de daños de la vía para los casos en que se requiere?	1					
2. Se aplicó correctamente el procedimiento de ensayos de laboratorio?						
Se realizaron la cantidad y tipo de ensayos establecida en la metodología?						
4. Se identifican los resultados de laboratorio de tal forma que permitan la trazabilidad de los mismos para cada vía?	/					
RESPONSABLE:	Ing. F. Co	ervantes .				
FIRMA:	10					
FECHA:	22/	1/04				
VERIFICACION (Confirmar que los resultados del dise	ño cumple	n con los re	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Existe coincidencia entre el registro de campo de los apiques, los ensayos de laboratorio, los perfiles estratigráficos definitivos y las conclusiones del estudio?						
 Las recomendaciones para la rehabilitación de cada vía corresponde con el inventario de daños y los resultados de los ensayos de laboratorio de suelos. 						
RESPONSABLE:	Ing. M. A	Imanza	/			
FIRMA:	a	10-1				
FECHA:	2211	1/04				
VALIDACION (Confirmar que cumple con los requisitos	s para su	aplicación o	uso)			
CRITERIOS DE VALIDACION						
1. Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:						
FIRMA:						
FECHA:						

FQ25-259-9

LISTA DE CHEQUEO DISEÑOS

PROYECTO:

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

ESPECIALIDAD: DISEÑO ESTRUCTURAL DE PAVIMENTO DOCUMENTO:

IDU-259-GT-E-4-3 MORALBA

		0.0	OBSERVACIONES	REV. No.		OBSERVACIONES
		NO CUMPLE		CUMPLE	NO CUMPLE	
REVISION (Confirmar su conveniencia para satisfacer la	s necesid	lades del Cl	liente)			
CRITERIOS DE REVISION:						
 Son adecuados los criterios para la selección de la capacidad de soporte del suelo de cada una de las vías 						
 Se realizaron los diseños para las alternativas de pavimentos previstas en la metodología. 	/		EL ANALISIS ECONOMICO DE LAS ALTERNATIVAS SE MUESTRA EN EL DOCUMENTO DE PRESUPUESTOS			
 Los resultados del número de ejes equivalentes en el período de diseño corresponde con la tipología, uso y tráfico actual de la vía. 						
 Las alternativas de pavimentos diseñados corresponden a las alternativas de rehabilitación recomendada. 	1					
RESPONSABLE:	Ing⊿F, Ce	ervantes				
IRMA:	J.C.					
ECHA:	22/1	V04				
VERIFICACION (Confirmar que los resultados del dise	ño cumple	en con los re	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
 Los resultados definitivos del diseño de pavimento para cada alternativa corresponde con los diseños existentes de vías con caracteristicas similares. 						
 Se tomaron los datos correctos de TPD cada 15 minutos, la tasa de proyección y la composición porcentual del tráfico según el estudio de tránsito. 		-				
RESPONSABLE:	Ing. M. A	lmanza	0			
FIRMA:	M	in				
FECHA:	22/1	1/04				
VALIDACION (Confirmar que cumple con los requisitos	para su	aplicación o	uso)			
CRITERIOS DE VALIDACION			•			
1. Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:						
IRMA:						
II MYN G						

ESTUDIO GEOTÉCNICO PARA EL DISEÑO DE PAVIMENTO VÍA 4-03 MORALBA

TABLA DE CONTENIDO

1.	IN	TRODUCCIÓN	1
2.	LO	CALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO	3
2.1		Características geométricas	3
2.2		Características climáticas	3
3.	INV	VESTIGACIONES REALIZADAS	
3,1		Trabajos de campo	
3.2		Ensayos de laboratorio	6
4.	CA	RACTERÍSTICAS GEOTÉCNICAS	8
4.1		Geología	8
4.2		Estabilidad de los taludes	8
4.3	;	Estado actual de las calzadas	8
4.4		Perfiles estratigráficos	8
4	.4.1	Relleno granular	9
4	.4.2	Subrasante	9
4.5	;	Capacidad de soporte1	0
5.	TR	ÁNSITO 1	1
6.	DIS	SEÑO DE PAVIMENTO1	2
6.1		Solución de Rehabilitación 1	2
6.2		Diseño de pavimento1	2

6.2.1	Consideraciones generales del método de la PCA	12
6.2.2	Factores de diseño	13
6.2.3	Resultados obtenidos pavimento rígido	14
6.2.4	Consideraciones generales del Método AASHTO	15
6.2.5	Resultados obtenidos – Método AASHTO	18
7. ES	PECIFICACIONES	19
7.1	Concreto hidráulico	19
7.2	Suelo cemento	19
7.3	Capa granular tipo Subbase granular	20
7.4	Capa de concreto asfáltico	20
8. AN	ÁLISIS TÉCNICO DE ALTERNATIVAS	21
8.1	Losas apoyadas sobre una capa de suelo cemento	21
8.2	Pavimento flexible	22
8.3	Alternativas recomendadas	
9 (0	NO ISIONES Y RECOMENDACIONES PARA	22

ANEXOS

ANEXO 1: REGISTRO DE LOS APIQUES

ANEXO 2: DETALLE DE ENSAYOS DE LABORATORIO

ANEXO 3: ENSAYOS DE PENETRACIÓN CON CONO

ANEXO 4: MEMORIAS DE CÁLCULO

ANEXO 5: REGISTRO FOTOGRÁFICO

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD

Instituto de Desarrollo Urbano

LISTA DE CUADROS

- Cuadro 1.1. Nomenclatura de la vía
- Cuadro 3.1. Profundidad de apiques
- Cuadro 5.1. Número de repeticiones esperadas por cada tipo de eje, por carril

'@

LISTA DE FIGURAS

Figura 2.1. Localización del proyecto

Figura 7.1 a 7.8 Esquemas para la construcción de juntas para

pavimento rígido

Figura 9.1. Esquema de localización de geodrén

LISTA DE FORMATOS TÉCNICOS

FT-259-GT-4-03-1

Localización de apiques y perfiles

estratigráficos

FT-259-GT-4-03-2

Resultados de Investigación Geotécnica

1. INTRODUCCIÓN

En el siguiente informe se presentan y describen cada una de las actividades realizadas tanto en campo como en laboratorio y los resultados y conclusiones de los estudios e investigaciones de suelos efectuados para el diseño del pavimento de unas vías localizadas en el barrio Moralba, en cumplimiento del Contrato IDU 259-2003 "Estudios y Diseños para la construcción y/o evaluación para rehabilitación de accesos a barrios locales – Programa de pavimento locales Grupo-2", suscrito entre el IDU y A. C. I. PROYECTOS S. A.

Las vías se encuentran ubicadas en el sur oriente de la ciudad y se desarrollan en la Localidad de San Cristóbal. En el siguiente cuadro se presenta la nomenclatura de la vía:

Cuadro 1.1. Nomenclatura de la vía

Nomenclatura	De	Hasta
KR 16A E	CL 42C S	DG 42 D S

Los estudios geotécnicos para el diseño del pavimento se efectuaron para cumplir con los objetivos que se presentan en forma resumida, a continuación:

 Mediante una evaluación superficial, determinar las condiciones actuales de la estructura existente

- Con la ejecución de investigaciones de campo y ensayos de laboratorio, determinar las condiciones físicas y mecánicas de las diferentes capas que conforman la estructura actual del pavimento y de la subrasante de la vía.
- Definir la solución de rehabilitación más apropiada para el pavimento, teniendo en cuenta las condiciones actuales de la vía, la subrasante, condiciones topográficas, condiciones de drenaje, etc.
- Con base en el tráfico que se espera durante un periodo de diseño de
 20 años, presentar dos alternativas de diseño del pavimento
- Determinar la estructura para los andenes

ALCALDÍA MAYOR
DE BOGOTÁ D.C.
MOVILIDAD
Instituto de Desarrollo Urbano

2. LOCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO

Tal como se enunció en la introducción, las vías estudiadas se encuentran ubicadas al sur oriente de la ciudad y se desarrollan en el barrio Moralba, perteneciente a la Localidad de San Cristóbal.

En la Figura 2.1 se presenta un plano con la localización del proyecto.

2.1 Características geométricas

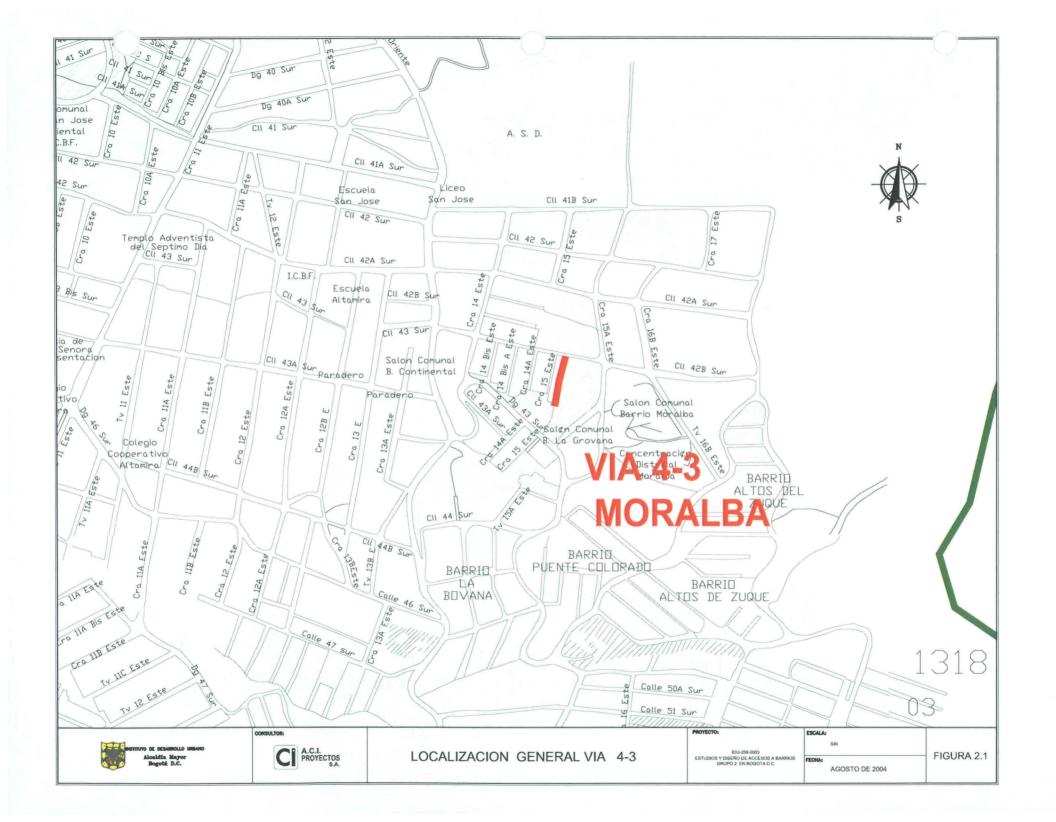
La vía estudiada presenta las siguientes características:

TPD actual: mínimo, uso vehicular restringido

Tipo de terreno: ondulado

Número de calzadas: 1 _ CALDÍA WAYOR

Pendiente Longitudinal Máxima: 18.83%


Abscisas: K0+000 a K0+145.80 VILIDAD

2.2 Características climáticas

En general, el clima de la Sabana de Bogotá, está influenciado por el desplazamiento de la zona de Convergencia Intertropical que interviene en el régimen pluviométrico, además, por encontrarse la ciudad de Bogotá en la cordillera oriental, el comportamiento de las lluvias pertenece al tipo de circulación Valle-Montaña.

Instituto de Desarrollo Urbano

La temperatura promedio anual es del orden de 14.8° con un máximo promedio de 21.6° y mínimo promedio de 5.3°.

Los meses más lluviosos corresponden a abril y mayo en un primer periodo y septiembre y octubre en el segundo.

3. INVESTIGACIONES REALIZADAS

Para cumplir con los objetivos establecidos, se llevaron a cabo trabajos de campo y ensayos de laboratorio, los cuales se describen a continuación:

3.1Trabajos de campo

Como parte de los trabajos de campo, se efectuó una inspección visual de la calzada para definir las condiciones actuales de la vía y se realizaron apiques localizados en promedio cada 50 m , los cuales se llevaron hasta una profundidad tal que se conociera la subrasante. La localización de los apiques se presenta en el Formato Técnico FT-259-4-03-1, incluido en el siguiente capítulo y su profundidad fue la siguiente:

Cuadro 3.1. Profundidad de apiques

Apiqu e No	Prof. (m)
4-3-1	2.00
4-3-2	2.00
4-3-3	2.00

En cada investigación se elaboró el perfil estratigráfico determinando los espesores de las diferentes capas encontradas y registrando el nivel freático si se llegase a encontrar. Por otra parte, se efectuaron ensayos de penetración con el cono de Yoder, el cual consiste en hincar el cono de penetración mediante la caída libre de un martillo de 8.0 Kg de peso,

registrando la cantidad de golpes que se requiere para penetrar cierta profundidad del estrato estudiado. Con los resultados obtenidos, se pudo determinar de manera indirecta el valor del CBR de la subrasante.

Los datos obtenidos de campo fueron valorados y procesados mediante el programa PDC, del paquete INPACO, de la Universidad del Cauca y el Instituto Nacional de Vías.

La correlación empleada para el cálculo del CBR fue la de TRRL, la cual corresponde a:

$$CBR = 302 * (PDC)^{-1.057}$$

Los valores así obtenidos, sirvieron para determinar en forma indirecta la resistencia de la subrasante a lo largo de la vía

El registro de los apiques se incluye en el Anexo 1 y los resultados de los ensayos de penetración con cono en el Anexo 3

3.2 Ensayos de laboratorio

En cada apique se recuperaron muestras representativas de las diferentes capas encontradas y sobre dichas muestras se realizaron ensayos de laboratorio que consistieron en:

- Obtención de la humedad natural
- Granulometría por tamizado, incluyendo lavado sobre tamiz No. 200
- Límites de consistencia (líquido y plástico) sobre material que pasa el tamiz No. 40.

- CBR inalterado en condiciones de humedad natural
- CBR inalterado saturado

El detalle de los ensayos de laboratorio realizados se presenta en el Anexo 2.

4. CARACTERÍSTICAS GEOTÉCNICAS

4.1 Geología

En la Sabana de Bogotá se presentan afloramientos de rocas sedimentarias de origen marino y continental, con edades entre el cretáceo y el terciario y depósitos sedimentarios de edad pleistoceno a reciente. En orden cronológico, de la más antigua a la más reciente las unidades geológicas son: Formación Chipaque, Grupo Guadalupe, Formación Guaduas, Formación Cacho, formación Bogotá, Formación Arenisca La Regadera, Formación Usme, formación Tunjuelo y Formación Sabana.

4.2 Estabilidad de los taludes

El proyecto se desarrolla en una zona no hay cortes y terraplenes por lo cual no se requiere de un estudio de estabilidad.

MOVILIDAD

4.3 Estado actual de las calzadas

De acuerdo con la evaluación superficial efectuada a lo largo de la vía se encuentra una relleno superficial granular.

4.4Perfiles estratigráficos

De las investigaciones realizadas, tanto de campo como de laboratorio, se presenta a continuación las características de cada una de las capas encontradas a lo larga de la vía:

4.4.1 Relieno granular

Esta conformado por grava limosa contaminado con desechos de construcción, de humedad media y densidad media. Se encuentra a lo largo del proyecto y su espesor varía entre 0.20 y 0.80 m.

4.4.2 Subrasante

Conformada por arcilla limosa y limo arcilloso de humedad media y consistencia media

Descripción: Arcilla limosa y limo arcilloso

% pasa No 4: 100%

% pasa tamiz No 200: 82-100%

Límite líquido: 45-61%

Índice de plasticidad: 18-35%

Humedad natural: 21-49%

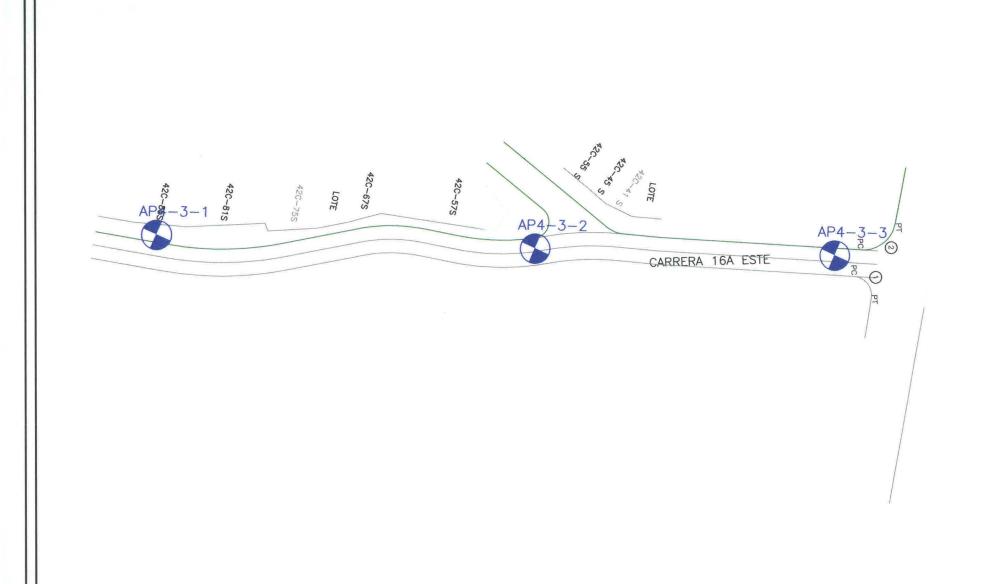
Clasificación U. S. C predominante: CH y MH

Clasificación AASHTO predominante: A-7-6

CBR de cono: 5.2-10.1%

CBR inalterado en condiciones de humedad natural: 18.8%

CBR inalterado sumergido: 4.9%


4.5Capacidad de soporte

La capacidad de soporte de la subrasante se definió en términos de CBR, para lo cual se efectuó el ensayo de penetración con cono cuyo resultado que varían entre 5.2 y 10.1%. Adicional a lo anterior el CBR natural 18.8 % y el sumergido entre 4.9%. De acuerdo con lo anterior se adopta como CBR de diseño un valor de 6.0%

En el Formato Técnico FT-259-GT-4-03-1 se presentan la localización de los apiques y los perfiles estratigráficos y en el Formato Técnico FT-259-GT-4-03-2, el resumen de los resultados de la investigación geotécnica

ALCALDÍA MAYOR
DE BOGOTÁ D.C.
MOVILIDAD
Instituto de Desarrollo Urbano

0

CONTRATANTE:

Alcaldía Mayor
Bogotá D.C.

A.C.I. PROYECTOS FT-259-GT-4-3-1

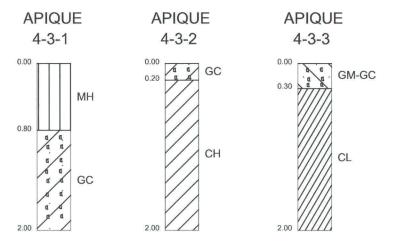
LOCALIZACION APIQUES Y PERFILES ESTRATIGRAFICOS
ESTUDIO Y DISEÑOS DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES
GRUPO 2 EN BOGOTA D.C.

4-3

LOCALIDAD
SAN CRISTOBAL

BARRIO
MORALBA

DISERIO:
E. COY


SEPT. 30/2004

REVISO:
F. CERVANTES

HOJA 1 DE 2

VERSION

0.0

Alcaldía Mayor
Bogotá D.C.

FT-259-GT-4-3-1							
OCALIZACION APIQUES Y PERFILES ESTRATIGRAFICOS ESTUDIO Y DISEÑOS DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES							
GRUPO 2 EN BOGOTA D.C.							

SAN CRISTOBAL	DISEÑO: E. COY	SEPT. 30/2004	VERSION
BARRIO MORALBA	REVISO: F. CERVANTES	HOJA 1 DE 2	0.0

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 INVESTIGACION GEOTECNICA RESULTADOS PPL-2004

FT- 259 - GT- 4 - 3 - 2

CONTRATO:		LOCALIDAD			VIA DESDE			HASTA BAF		RRIO	FECHA DE		Septiembre 30 de							
		CAN CRICTORAL		A 2		KR 16 A E		CL 4	42 C S DG 4:		DG 42 D S			oralba	REALIZACIÓN		2004			
IDU 259 D	E 2003	3 SAN CR		SAN CRISTOBAL		4-3						- "	oralba	VERSIÓN		0.0				
<u> </u>	No.		MUESTR	RA		ANUL			PL	ASTICID	AD		CLASIFIC			IL	CBR %			
ABSCISA	ĕ≥				<u>%</u>	PASA		_					AASH	то	_		PDC _	IN.	NALTERA	.DO
	APIQUE No.	No.	PROFUN. (m)	Tipo de Capa	No. 4	No. 10	No. 40	No. 200	LL(%)	LP(%)	IP(%)	usc	GRUPO	IG	Wn (%)	(Wn-LP)/IP		Wn (%)	SUM	EXP %
	4-3-1	1	0,00-0,80	Granular	51	44	38	24	26	15	11	GC	A-2-6	0	10,0					
	4-3-1	2	0,80-2,00	Subrasant			100	82	50	32	18	МН	A-7-6	17	49,0	0,94	10,1			<u> </u>
		1	0,00-0,20	Granular	67	59	54	35	24	17	7	GC	A-2-4	0	10,2			++		
	4-3-2	2	0,20-0,74	Subrasant			100	98	61	26	35	СН	A-7-6	40	25,9		8,9	17,78	4,92	2,4
		3_	0,74-2,00	Subrasant				100	54	28	26	СН	A-7-5	31	22,4	-				
		1	0,00-0,30	Granular	61	55	50	31	23	16	7	GM-GC	A-2-4	0	9,7			+		
	4-3-3	2	0,30-2,00	Subrasant	100	98	96	88	45	23	22	CL	A-7-6	21	21,3		5,2			-
LABORO :	<u>[</u>			E.C	.A	<u> </u>	L	L	_	L	REVISO	:				F.C		ــــــــــــــــــــــــــــــــــــــ		Т

5. TRÁNSITO

Para efectos de diseño se adoptaron los siguientes valores:

N=5.0*10⁵ para el diseño de pavimento flexible

Para el diseño en pavimento rígido:

Cuadro 5.1. Número de repeticiones esperadas para cada tipo de eje, por carril

Tipo de eje	Carga por eje (KN)	Repeticiones
_	80	131400
Simple	90	0
	95	0
Tándem	200	0
Tanacin	230	0
Trídem	240	0

6. DISEÑO DE PAVIMENTO

Con base en los análisis realizados, incluyendo los resultados de laboratorio y las características de la vía y el tráfico, se presenta a continuación la solución de la rehabilitación y el diseño del pavimento

6.1 Solución de Rehabilitación

 La solución para la rehabilitación de la vía consiste en la construcción de la vía, pues actualmente no cuenta con ningún tipo de estructura

6.2 Diseño de pavimento A WAYOR

Se presentan las dos siguientes alternativas

- Losas de concreto de módulo de rotura de 4.1 Mpa a los 28 días apoyadas sobre una capa de suelo cemento de resistencia a la compresión a los 7 días de 2.1 MPa y un espesor de 150 mm
- Pavimento de tipo flexible

Para la determinación del espesor de las losas se empleó el método de la PCA, el cual se describe a continuación:

6.2.1 Consideraciones generales del método de la PCA

El método de la PCA tiene en cuenta las siguientes consideraciones:

- Además de involucrar las consideraciones analíticas obtenidas por Westergaard, Pickcett y Ray, tiene en cuenta los resultados y el funcionamiento observados en pruebas experimentales de la AASHTO y modelos a escala como el ensayo de Arlington.
- Este método tiene en cuenta además del grado de transferencia de carga entre losas, el efecto de usar bermas ligadas al pavimento, las cuales reducen los esfuerzos de flexión y las deflexiones producidas por las cargas de los vehículos
- Se tienen en cuenta dos criterios de diseño: A) Fatiga, con el cual se garantiza que los esfuerzos del pavimento producidos por la acción repetida de las cargas se encuentren dentro de límites de seguridad y que se presente la fatiga por agrietamiento. B) Erosión, para limitar el efecto de deflexión en los bordes de las losas, juntas y esquinas y con ello controlar la erosión del suelo de fundación y de los materiales de las bermas. Este criterio es necesario pues fallas como el bombeo, el desnivel de losas y el deterioro de bermas son independientes de la fatiga.

6.2.2 Factores de diseño

Una vez de elegir el tipo de pavimento por construir, la subbase sobre la cual se apoyarán las losas, tipo de transferencia de carga entre losas y la presencia o no de bermas se deben tener en cuenta los siguientes factores:

6.2.2.1 Resistencia del concreto a la flexión

Se tiene en cuenta para el procedimiento de diseño por el criterio de fatiga y con él se controla el agrietamiento del pavimento bajo la acción repetida de

cargas vehiculares. Para este caso se utilizarán losas de concreto con una resistencia a la flexión, medida por ensayos de módulo de rotura a los 28 días de 4.1 MPa

6.2.2.2 Capacidad de soporte de la subrasante

Se mide en términos del módulo de reacción (K), el cual se puede estimar con el CBR, ya que no es indispensable determinar el valor exacto del módulo K, ya que variaciones no muy grandes de él, prácticamente no afectan los espesores de pavimento.

Para un valor de CBR de 6.0% y una base estabilizada con cemento de 15.0 cm de espesor, se tiene un valor de K combinado de:

 $K_{Combinado} = 5.21 \text{ Kg/cm}^2$

6.2.2.3 Tránsito

Se tendrán en cuenta el número y la magnitud de las cargas por eje que se esperan durante el periodo de diseño, los cuales fueron calculados en el capítulo anterior.

CALDÍA MAYOR

6.2.2.4 Factor de seguridad de carga

El método de diseño exige que las cargas reales esperadas se multipliquen por un factor de seguridad de carga. Para este caso se adopta un valor de factor de seguridad de carga (Fsc) de 1.1

6.2.3 Resultados obtenidos pavimento rígido

En el Anexo 4 se presenta la memoria de cálculo para la determinación de los espesores de losa requeridos.

La estructura recomendada será:

Losa de concreto de MR=4.1 Mpa: 190 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

Para el diseño del pavimento flexible se utilizará la metodología desarrollada por la AASHTO

6.2.4 Consideraciones generales del Método AASHTO

Después de muchos años de investigación, la AASHTO, definió una metodología de diseño, en la que ha integrado varios factores o variables entre las cuales se encuentran:

6.2.4.1 Tránsito

Representado por el número de ejes equivalentes de 8.2 toneladas que utilizarán la vía en el carril de diseño durante un período determinado de tiempo.

Para este caso será:

 $N = 5.00 * 10^5$

6.2.4.2 Confiabilidad

Se refiere al nivel de probabilidad que tiene una estructura de pavimento diseñada para durar a través del período de análisis, tomando en cuenta las posibles variaciones del tráfico previstas así como las del modelo de comportamiento AASHTO, proporcionando un nivel de confiabilidad R que asegure que las secciones del pavimento duren el período para el cual fueron

diseñadas. De acuerdo con el tipo de vía, el valor adoptado de confiabilidad es del 90% con el cual el valor de Desviación Normal Zr será de –1.282.

6.2.4.3 Índice de servicio:

Es la habilidad específica de una sección de pavimento para servir al tráfico. Para efectos del diseño se utiliza el valor de ΔPSI que se define como:

 $\Delta PSI = Po - Pf$

siendo

Po: Índice de serviciabilidad inicial=4.2

Pf: Índice de serviciabilidad final=2.5

6.2.4.4 Caracterización de los Materiales de las Capas de Pavimento:

Las diferentes capas que conforman la estructura del pavimento están caracterizadas por el "Coeficiente de Capa" que corresponde a una medida de la habilidad relativa de una unidad de espesor de un material dado para funcionar como componente estructural del pavimento.

El coeficiente de capa para cada material será:

Cuadro 6.1. Coeficientes de capa empleados en el diseño del pavimento

Tipo de material	Coeficiente de capa (a _i)
Concreto asfáltico tipo MDC-2	0.35
Concreto asfáltico tipo MDC-1	0.35
Capa granular tipo base estabilizada con cemento	0.18
Capa granular tipo subbase	0.11

6.2.4.5 Coeficiente de drenaje

Por las condiciones topográficas del terreno y las características de los materiales que se van a utilizar en las capas, se emplearán los siguientes coeficientes de drenaje:

Cuadro 6.2. Coeficientes de drenaje empleados en el diseño del pavimento

Tipo de material	Coeficiente de drenaje (mi)
Concreto asfáltico tipo MDC-2	1.0
Concreto asfáltico tipo MDC-1	1.0
Capa granular tipo base estabilizada con cemento	1.0
Capa granular tipo subbase	1.0

6.2.4.6 Módulo de la subrasante

De acuerdo con lo descrito en el capítulo 4, el CBR de diseño corresponde 6.0%

El módulo de la subrasante se obtuvo con base en la ecuación de la AASHTO:

ESBR = 1500*CBR (psi), con la cual,

ESBR = 1500*6.0 = 9000 (psi)

6.2.4.7 Número estructural (Sn)

El número estructural requerido para el período de diseño se obtiene con base en la siguiente ecuación:

 $Log(N) = ZR*So+9.36*log(SNr+1)-0.20+(\Delta PSI/(4.2-1.5)/(0.4+1094/(SNr+1)^{5.19}) + 2.32*log(ESBR)^{18.07} + 2.32*log(ESBR$

en la cual,

N: Número de ejes equivalentes

ZR: Desviación normal que depende del nivel de confiabilidad R=-1.282

So: Desviación estándar total=0.45

SN: Número estructural requerido (")

ΔPSI: Po - Pf

ESBR = Módulo de resiliencia de la subrasante

6.2.5 Resultados obtenidos - Método AASHTO

En las memorias de cálculo se incluye el detalle de la determinación de los espesores de cada capa CALDÍA MAYOR

El número estructural requerido será de:

MOVILIDAD Sn = 2.90" Instituto de Desarrollo Urbano

El cual se obtiene con la siguiente estructura:

Capa de rodadura en concreto asfáltico tipo MDC-2: 75 mm

Base estabilizada con cemento: 150 mm

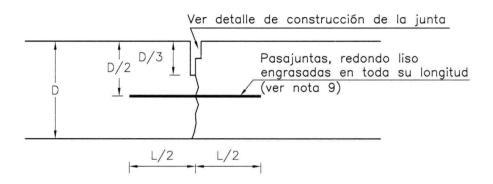
Subbase granular: 220 mm

7. ESPECIFICACIONES

Las diferentes capas que conformarán la estructura del pavimento, deberán cumplir con los siguientes requerimientos:

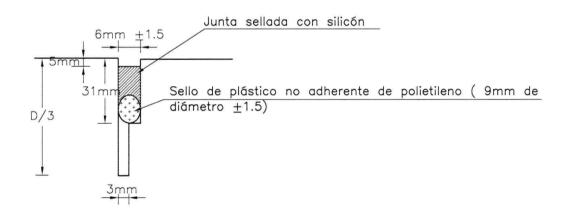
7.1 Concreto hidráulico

Las losas de concreto hidráulico tendrán un módulo de rotura de 4.1 Mpa.


Los materiales por emplear, como son cemento, agua, agregado fino y agregado grueso, deberán cumplir con los requerimientos establecidos en el artículo 500 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

En las figuras 7.1 a 7.8, se presentan los esquemas para la construcción de juntas de contracción transversales, juntas longitudinales y transversales de construcción, juntas de expansión y los criterios que se deben tener en cuenta para la modulación de las losas.

7.2 Suelo cemento


La capa de suelo cemento deberá cumplir con todos los requerimientos establecidos en el artículo 341 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

CORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

D= ESPESOR DE LA LOSA DE PAVIMENTO

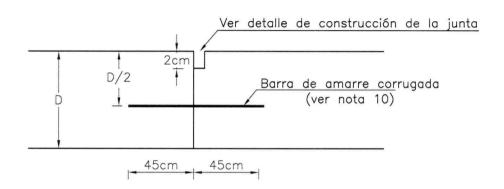
DETALLE DE CONSTRUCCIÓN DE LA JUNTA

NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

La ranura inicial de 3 mm. para debilitar la sección deberá ser hecha en el momento oportuno para evitar el agrietamiento de la losa, la pérdida de agregados en la junta, o el desportillamiento. El corte adicional para formar el depósito de la junta deberá efectuarse cuando menos 72 horas después del vaciado.

CONSULTOR


OBTE Y SELIADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

PROTECTO	470
IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN YIO EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	FEC

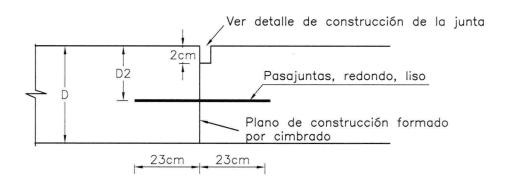
4-3 ESCALA:
SIN

FECHA:
OCTUBRE DE 2004

CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)

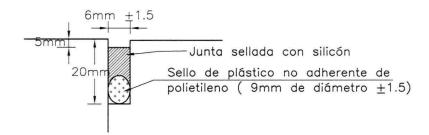
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA



NOTA:

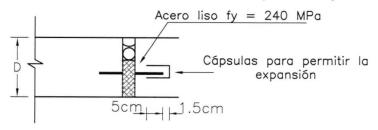
La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.


(CONSULTOR:		PROYECTO:	VIA	ESCALA:	
MISTITUTO DE DESARROLLO URBANO Alcaldía Mayor Bogotá D.C.	A.C.I. PROYECTOS	CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)	IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	4-3	SIN	FIGURA 7.2
				001001	L DL LOOT	

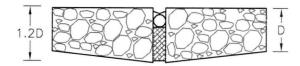
CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 3)

D= ESPESOR DE LA LOSA DE PAVIMENTO

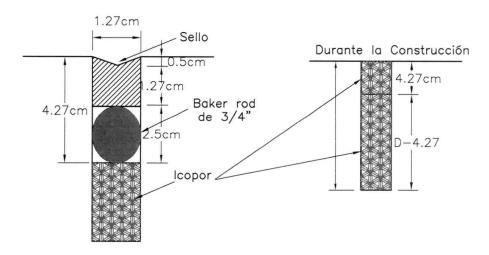
DETALLE DE CONSTRUCCIÓN DE LA JUNTA


NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

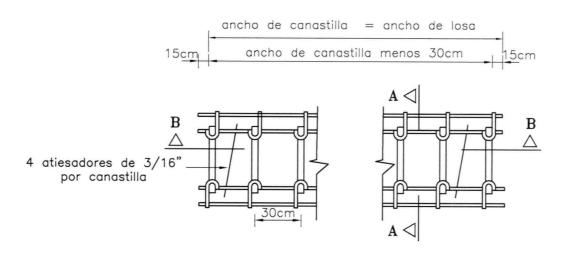

/ 	CONSULTOR:		PROYECTO:	VIA	ESCALA:	
Alcaldia Mayor	Cî A.C.I.	CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN	IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-3	SIN	FIGURA 7.3
Bogotá D.C.	PROYECTOS	CON PASAJUNTAS (TIPO 3)	Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	OCTUBE	RE DE 2004	

JUNTA DE EXPANSIÓN TIPO 4

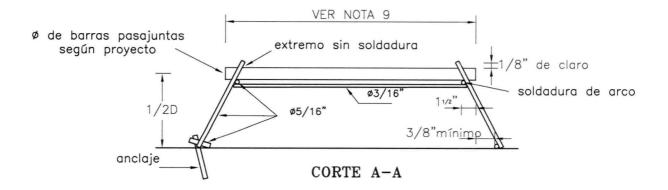

JUNTA DE EXPANSIÓN CON DOVELAS (TIPO 4A)

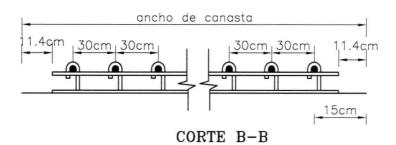
JUNTA DE EXPANSIÓN SIN DOVELAS (TIPO 4B)

DETALLE DE LA JUNTA



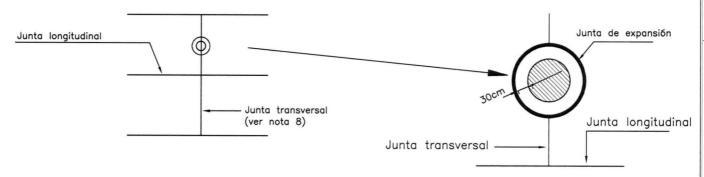
NOTA:

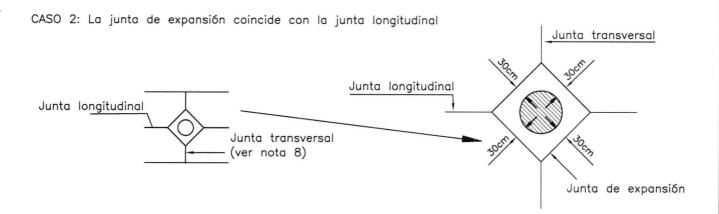

Cuando se tenga la losa conformada, se procederá a retirar el icopor de la parte superior y se construirá la estructura de sello.

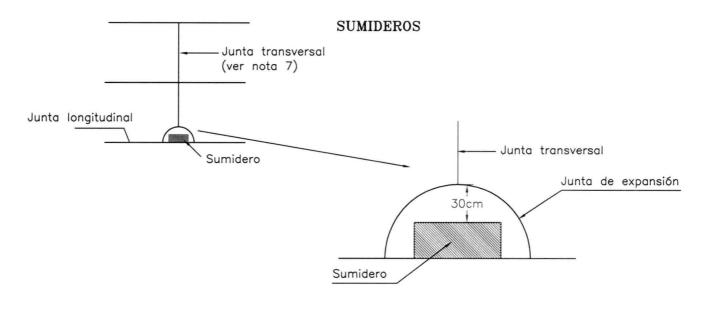

	CONSULTOR:		PROTECTO	WA	ESCALA:	
PISTITUTO DE DESARROLLO URBANO	Ci A.C.I.		IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-3	SIN	FIGURA 7.4
Aloaldia Mayor Bogotá B.C.	PROYECTOS	JUNTA DE EXPANSIÓN TIPO 4	Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2	OCTUBE	RE DE 2004	FIGURA 7.4

CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN

VISTA EN PLANTA

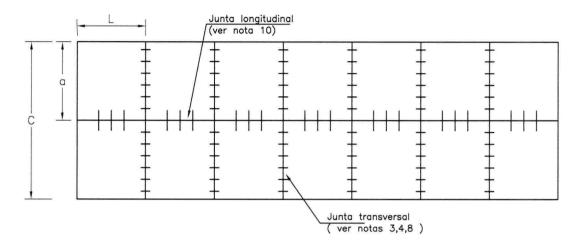





	CONSULTOR:		PROYECTO:	VIA	ESCALA:	
A.C.I.			IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-3	SIN	FIGURA 7.5
Alouldia Mayor Bogota D.C.	PROYECTOS	CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN		OCTUBRE DE 2004		

CASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCIÓN

CASO 1: La junta de expansión no concide con la junta longitudinal


A.C.I.

ASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCION—SUMIDEROS IDU-259-2003
ESTUDIOS Y DISENOS PARA LA COSTRUCCION
YIO EVALUACION PARA REHABILITACION DE
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES
GRUPO.

4-3 ESCALA:
SIN

FECHA:
OCTUBRE DE 2004

MODULACIÓN DE LOSAS

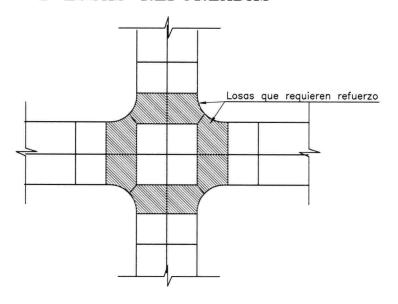
NOTAS GENERALES:

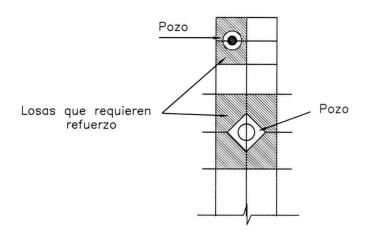
- El ancho de la placa (a) será la mitad de la calzada C/2.
 La relación de esbeltez (L/a) deberá estar entre 1.0 1.4
 Las juntas transversales serán de contracción aserradas con pasajuntas (tipo 1)
- 2. Donde se termine la fundida del día se construirá una junta transversal de
- 3. construcción (tipo 3). Esta junta deberá coincidir siempre con una junta
- transversal de contracción.
 La junta longitudinal será de construcción con pasajuntas (tipo 2).
 Se emplearon juntas de expansión tipo 4A (con dovelas) cuando se presenten
- 5. cambios importantes en la dirección de la vía. 6. Para el caso de pozos y sumideros se empleará la junta de expansión tipo 4B.
- La modulación de las losas deberá ajustarse a la presencia de obras hidráulicas 7. como pozos de inspección y sumideros de tal manera que la junta transversal
- 8. coincida con dichas estructuras, manteniendo la relación de esbeltez. La longitud y diámetro de las barras pasajuntas dependerán del espesor de losa según el siguiente cuadro:

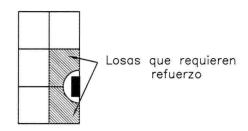
ESPESOR DEL PAVIMENTO		RO DEL ADOR	LONGITUD TOTAL	SEPARACION ENTRE CENTROS
(Cm)	(Cm)	(Pulg)	(Cm)	(Cm)
16-18	2.22	7/8"	35	
19-20	2.54	1"	35	30
21-23	2.54	1*	40	24
24-25	2.54	1*	45	19
26-28	2.54	1*	45	15

- 10. La barra de amarre para la junta longitudinal de construcción será de 90cm de longitud y 1/2" de diámetro de acero de 420 MPa. Se colocarán 3 por losa.
- Algunos de los detalles han sido tomados de los Criterios y Especificaciones para Diseño y Construcción de Pavimentos de Concreto Hidraulico — 2003. ASOCRETO.

4.2.4	MISTITUTO DE DESARROLLO URBANO
A 40	Alcaldia Mayor
SHEET	Bogotá D.C.




MODULACIÓN DE LOSAS


ESTUDIOS Y DISEÓS PARA LA COSTRUCCIÓN Y/O EVALUACIÓN PARA REPABLITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.

VIA 4-3 ESCAIA:
SIN
FECHA:
OCTUBRE DE 2004

MODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

NOTA:

- 1. Todas las losas asimétricas requieren de refuerzo
- 2. El refuerzo consistirá en varillas $\phi 1/2$ " cada 25cm en las dos direcciones.
- 3. El refuerzo se colocará a una distancia de D/3 medida desde la parte superior de la losa.

Alceldia M	-
Borota D	g-ua

Ci	A.C.I. PROYECTOS

CONSULTOR:

MODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

	1
IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION YIO EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2:	F

VIA	ESCALA:	
4-3	SIN	
FECHA:		
	OCTUBRE DE 2004	

7.3Capa granular tipo Subbase granular

La capa granular tipo subbase, deberá cumplir con las especificaciones establecidas en las normas IDU

7.4 Capa de concreto asfáltico

Los materiales por emplear en la construcción de la capa de rodadura (MDC-2) deberán cumplir con las Normas de construcción del INV – 1996, artículo 450

8. ANÁLISIS TÉCNICO DE ALTERNATIVAS

Desde el punto de vista técnico, las alternativas presentadas son viables y sus ventajas y desventajas son las siguientes:

8.1Losas apoyadas sobre una capa de suelo cemento

Las ventajas y desventajas que se tienen al implementar esta alternativa son las siguientes:

- Requiere de una profundidad de excavación del orden de 0.34 m
- Si el mezclado se hace en vía, se requiere del empleo de maquinas mezcladoras rotativas que garanticen un buen mezclado con el cemento.

DE BOGOTA D.C.

- Si se mezcla en planta, se facilita el proceso constructivo
- El material no es fácilmente erosionable, lo cual es favorable para evitar el fenómeno de bombeo en las losas
- En época de lluvias el rendimiento en el proceso constructivo se ve diezmado
- Las labores para mantenimiento son mínimas y se requieren en un lapso considerable de tiempo, aproximadamente cada 5 años

8.2Pavimento flexible

Sus ventajas y desventajas son las siguientes:

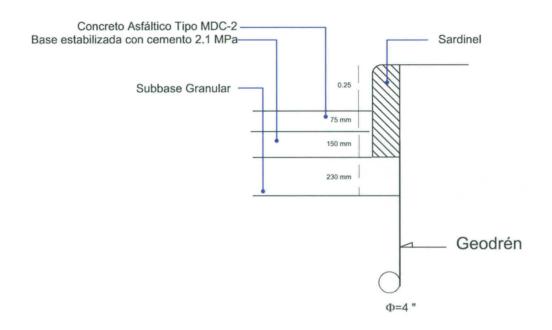
- Requiere de excavaciones del orden de 0.43 m.
- En época de lluvia los rendimientos de construcción disminuyen notablemente
- Su costo inicial es menor que la alternativa en pavimento rígido
- Su mantenimiento requiere de labores de parcheo y sello de fisuras cada 3 años aproximadamente

8.3 Alternativas recomendadas

Desde el punto de vista técnico, cualquiera de las alternativas presentadas podrá implementarse, sin embargo, teniendo en cuenta las características de los pavimentos en el barrio, se recomienda implementar la solución de losas apoyadas sobre una capa de base estabilizada con cemento

9. CONCLUSIONES Y RECOMENDACIONES

De los análisis y descripciones anteriores se deducen las siguientes conclusiones y recomendaciones:


- La vía denominada 4.03, Moralba, presenta actualmente una capa granular tipo afirmado con desechos de construcción
- La subrasante natural encontrada corresponde a arcilla limosa y limo arcilloso de consistencia media
- Por las condiciones actuales de la vía, se recomienda como solución de rehabilitación la construcción de la estructura del pavimento, que por las condiciones topográficas y los pavimentos existentes en la zona, se recomienda que sea en concreto hidráulico.
- De acuerdo con las características de la subrasante y el tráfico esperado en los próximos 20 años, la alternativa para la estructura del pavimento es la siguiente:

Losa de concreto de MR=4.1 Mpa: 190 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

 Los diseños presentados tienen como premisa que la vía contará con un adecuado sistema de drenaje superficial. Para el drenaje subsuperficial, se deberán colocar, tal como lo muestra la figura 9.1,

ESQUEMA DE LOCALIZACION DE GEODREN

Nota:

1. El tubo del geodrén se conectará al alcantarillado pluvial.

filtros tipo geodrén o similar conectados a los sumideros o pozos de aguas lluvias. Estos filtros se deberán colocar a lo largo de la vía en el costado más alto.

 De acuerdo con las características de la subrasante, se recomienda para los ándenes la siguiente estructura

Adoquín: 60 mm

Arena: 40 mm

Subbase granular: 250 mm

Las conclusiones y recomendaciones presentadas en este informe, están basadas en investigaciones puntuales realizadas a lo largo de la vía, por lo cual es factible que durante la construcción se presenten condiciones diferentes a las consideradas en el presente estudio. En caso de que esto suceda, se deberá informar a la firma consultora para recomendar las medidas del caso

MOVILIDAD
Instituto de Desarrollo Urbano

MOVILIDAD
Instituto de Desarrollo Urbano

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

APIQUE No. 4-3-1 REALIZÓ: E.C.A FECHA: SEPT. 30 DE 2004 LOCALIZACIÓN: F.C.V Cr a.16 E N.42C-27 S REVISÓ: **HOJA No:** 1 de 1 **MUESTRA** PROF. **DESCRIPCIÓN Y OBSERVACIONES** (m) PROF. (m) TIPO 0,00 0.00-0.80 Alterada 0.00-0.80 Relleno de escombros de construcción de plasticidad alta y 0,50 humedad media. 1,00 0.80-2.00 2 Alterada 0.80-2.00 Grava arcillosa con raíces de oxidación de humedad media. 1,50

2.00 FIN DEL APIQUE

2,00

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

APIQUE No.

4-3-2

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

Cra 16 A E N.42C-41 S

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.	MUESTRA		4	DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION Y OBSERVACIONES
0,00	1	0.00-0.20	Alterada	0.00-O.20 Relleno de escombros de construcción en matriz de gravarcillosa amarilla de humedad media.
0,50	2	0.20-0.74	Inalterada	0.20-0.74 Arcilla habana y amarilla de plasticidad alta, humedad media consistencia firme.
1,00		-		
1,50	3	0.74-2.00	Alterada	0.74 - 2.00 Arcilla rojiza de plasticidad alta y humedad baja.
2,00				2.00 FIN DEL APIQUE

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

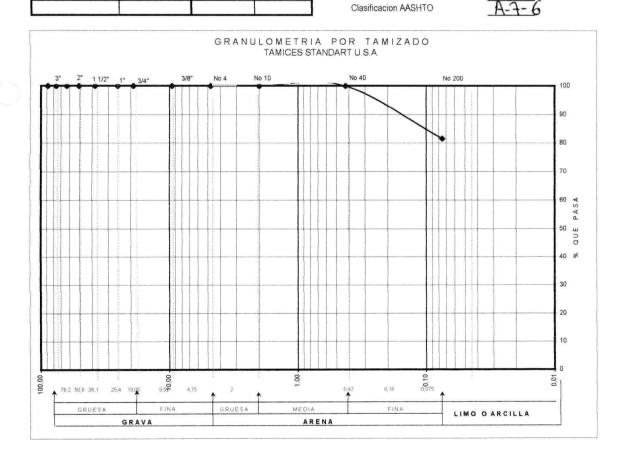
APIQUE No. 4-3-3 REALIZÓ: E.C.A FECHA: SEPT. 30 DE 2004

LOCALIZACIÓN: Cra 16A E No.42C-75 Sur REVISÓ: F.C.V HOJA No: 1 de 1

PROF.		MUESTRA	4	DECORIDOIÓN Y ORCEDVA CIONES	
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES	
0,00	1	0.00-0.30	Alterada	0.00-O.30 Relleno de escombros de construcción en matriz de grava limo- arcillosa de humedad baja.	
0,50					
1,00	2	0.30-2.00	Alterada		
1,50	2	0.30-2.00	Allerada	0.30-2.00 Arcilla limosa habana-rojiza de plasticidad media a alta y humedad baja.	
1,50					
2,00					
				2.00 FIN DEL APIQUE	

DETALLE DE ENSAYOS DE LABORATORIO

MOVILIDAD
Instituto de Desarrollo Urbano



Clasificacion U.S.C.

FL-8 ANALISIS GRANULOMETRICO

C-259-4-03-01-02

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 03-Jun-04 **UBICACIÓN** Carrera 16 A Este N MARGEN IZQUIERDO SUELO NATURAL DESCRIPCION: PROF.: 0.80/2.00 m GRADACION **HUMEDAD NATURAL** 152,8 28,1 P1 268 Peso retenido % Retenido % Pasa 193,1 Tamiz P2 31/2" P3 0,0 0,0 100,0 40,3 3" 0,0 0,0 100,0 %HUM 49,0 2" 1/2" 0,0 0,0 100,0 Límite Líquido 50.25% 2" 0,0 0,0 100,0 Límite Plástico 32,40% 1 1/2" 0,0 0,0 100,0 Índice Plasticidad 17,8% 1" 0,0 0,0 100,0 3/4" 0.0 0.0 100.0 Especificación: Gradacion tipo A 3/8" 0,0 100,0 0,0 sección 13 (IDU) 100,0 4 0.0 0,0 10 0,0 0,0 100,0 0,0 Grava (%) 40 0,0 0,0 100,0 18,4 Arena 200 28.1 18.4 81.6 81.6 Finos (%) FONDO 124.7 81,6

OBSERVACIONES:

Kerefulf Geglechölogy

FIRMA:

ingeniero

FL-9

LIMITES Y CLASIFICACION

C-259-4-03-01-02

OBRA:

IDU-259-03

SECTOR: SAN CRISTOBAL

UBICACIÓN Carrera 16 A Este No. 42C - MARGEN

IZQUIERDO

03-Jun-04

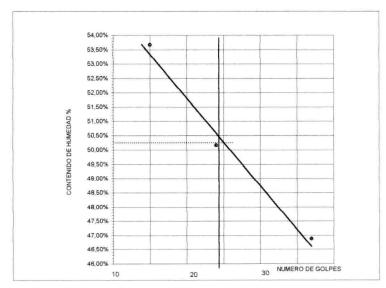
DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO

ENVITE EIGOIDO				
No. De Golpes	37	24	15	
Recipiente No	87	55	138	
P1 gr.	41,37	46,15	39,53	
P2 gr.	30,09	33,02	27,27	
P3 gr.	6,03	6,85	4,43	
% Humedad	46,9%	50,2%	53,7%	

Límite Liquido % 50,25% Límite Plástico % 32,40%

Indice de Plasticidad %


FECHA:

17,8%

LIMITE PLASTICO

Recipiente No	34	104	
P1 gr.	12,86	12,24	
P2 gr.	11,40	10,43	
P3 gr.	6,89	4,85	
% Humedad	32,37%	32,44%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

_Ingeniero ·

FL-8

200

FONDO

ANALISIS GRANULOMETRICO

C-259-4-03-01-01

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 03-Jun-04 **UBICACIÓN** Carrera 16 A Este MARGEN IZQUIERDO DESCRIPCION: **RECEBO** 0,00/0,80 m PROF.: GRADACION **HUMEDAD NATURAL** P1= 2.588,0 1.958,0 P1 3176 Peso retenido % Retenido % Pasa P2 Tamiz 2918 31/2" 0,0 0,0 100,0 P3 330,0 3" 0,0 0,0 100,0 %HUM 10.0 2" 1/2" 0,0 0,0 100,0 Límite Líquido 25,60% 2" 0,0 0,0 100,0 Límite Plástico

1 1/2" 106,0 4.1 95.9 1" 416,0 16,1 79,8 3/4" 128,0 4,9 74,9 3/8" 350,0 13,5 61,4 4 272,0 10,5 50,9 10 182,0 7,0 43,8 40 156.0 6.0 37.8

13,4

24,3

24,3

348,0

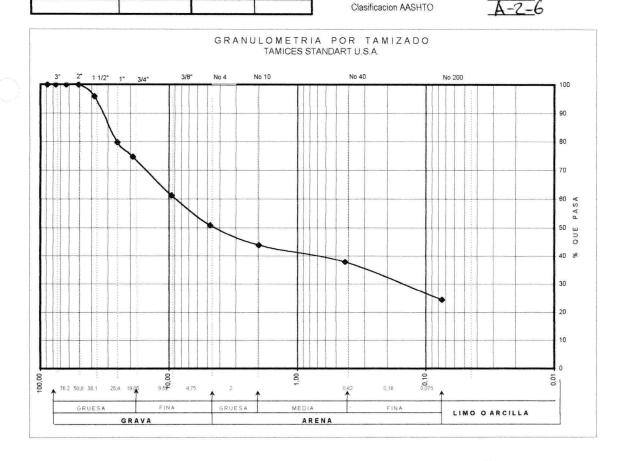
630,0

P3 330,0
%HUM 10,0

Limite Liquido 25,60%

Limite Plástico 15,16%

Índice Plasticidad 10,4%


Especificación: Gradacion tipo A sección 13 (IDU)

Grava (%) 49,1

Arena (%) 26,5

Finos (%) 24,3

Clasificacion U. S. C.

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-03-01-01

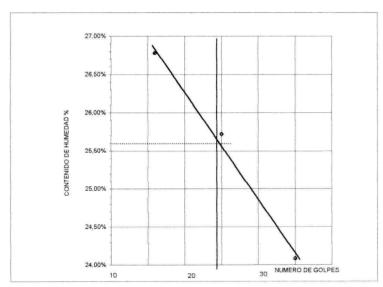
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 16 A Este No. 42C - MARGEN
 IZQUIERDO
 FECHA:
 03-Jun-04

 DESCRIPCION: SUELO NATURAL
 ORACIONATURAL
 ORA

LIMITE LIQUIDO No. De Golpes 35 25 16 Recipiente No 92 22 57 P1 gr. 47.66 51.70 41.68 P2 gr. 39,46 42,65 34,43 P3 gr. 7,46 7,36 5,41 24,1% 25,7% 26,8% % Humedad

Límite Liquido % 25,60%


Límite Plástico % 15,16%

Indice de Plasticidad % 10,4%

LIMITE PLASTICO

Recipiente No	100	154	
P1 gr.	13,01	12,87	
P2 gr.	11,95	11,76	
P3 gr.	5,04	4,35	
% Humedad	15,34%	14,98%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

- FL-8

200

FONDO

ANALISIS GRANULOMETRICO

EJE

C-259-4-03-02-01

UBICACIÓN PROF.:

OBRA:

IDU-259-03
Carrera 16 A Este N MARGEN

SECTOR: SAN CRISTOBAL

FECHA

03-Jun-04

RECEBO

C D A D

0,00/0,20 m

GRADACION

CKABACION				
P1=	2.170,0	P2=	1.410,0	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2"	0,0	0,0	100,0	
3"	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2"	0,0	0,0	100,0	
1 1/2"	0,0	0,0	100,0	
1"	104,0	4,8	95,2	
3/4"	92,0	4,2	91,0	
3/8"	318,0	14,7	76,3	
4	214,0	9,9	66,5	
10	152,0	7,0	59,4	
40	118,0	5,4	54,0	

412.0

760,0

19.0

35,0

35,0

HUMEDAD NATURAL

P1 2502 P2 2280 P3 110,0 %HUM 10,2

 Limite Liquido
 23,80%

 Limite Plástico
 17,08%

 Índice Plasticidad
 6,7%

Especificación:

DESCRIPCION:

Gradacion tipo A

sección 13 (IDU)

 Grava
 (%)
 33,5

 Arena
 (%)
 31,4

 Finos
 (%)
 35,0

 Clasificacion U. S. C.
 6C

OBSERVACIONES:

FIRMA:

FL - 9 LIMITES Y CLASIFICACION C-259-4-03-02-01

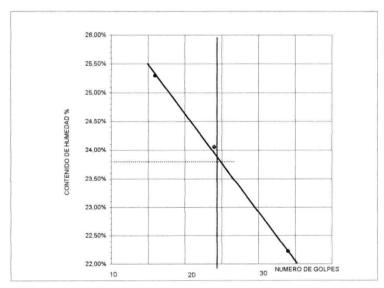
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 16 A Este No. 42C - MARGEN
 EJE
 FECHA:
 03-Jun-04

 DESCRIPCION: RECEBO
 OBLIGACIÓN
 RECEBO
 03-Jun-04
 03-Jun-04

LIMITE LIQUIDO No. De Golpes 34 16 Recipiente No 137 162 71 P1 gr. 43,48 63.29 61,64 P2 gr. 36,36 55,15 53,26 P3 gr. 4,32 21,31 20,14 % Humedad 22,2% 24,1% 25,3%

 Límite Liquido
 %
 23,80%


 Límite Plástico
 %
 17,08%

 Indice de Plasticidad
 %
 6,7%

LIMITE PLASTICO

Recipiente No	40	52	
P1 gr.	20,17	18,93	
P2 gr.	18,22	17,14	
P3 gr.	6,74	6,72	
% Humedad	16,99%	17,18%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

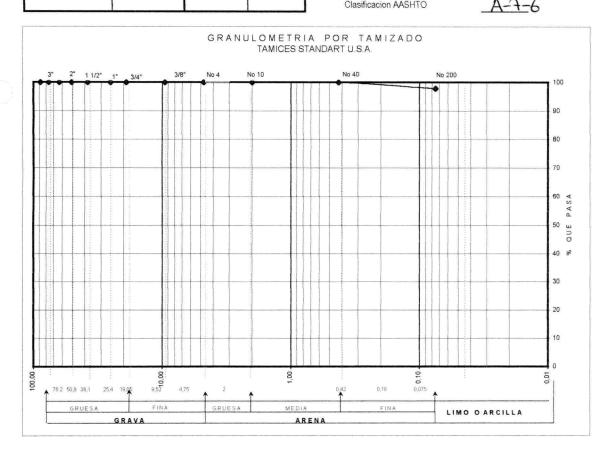
Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO

C-259-4-03-02-02

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 03-Jun-04


 UBICACIÓN
 Carrera 16 A Este \ MARGEN
 EJE
 DESCRIPCION:
 SUELO NATURAL

 PROF.:
 0,20/0,74 m
 TOTAL
 TOTAL
 TOTAL

GRADACION

P1=	378,4	P2=	8,
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4*	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	. 0,0	100,0
40	0,0	0,0	100,0
200	8,3	2,2	97,8
FONDO	370,1	97,8	
	1		***************************************

HUI	MEDAD NATU	IRAL
P1	586	
P2	488	
P3	109,6	
%HUN	25,9	
Limite Liquido		60,70%
Límite Plástico		26,33%
Índice Plasticidad		34,4%
Especificación: sección 13 (IDU)	Gradacion tipo	ρA
Grava (%)		0,0
Arena (%)		2,2
Finos (%)		97,8
Clasificacion U. S. C.		CH
Oldonicación Monthe	(M-1-0

OBSERVACIONES:

FIRMA:

ingeniero

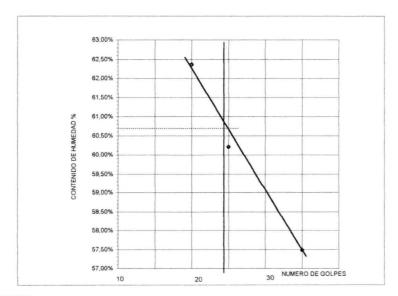
FL - 9 LIMITES Y CLASIFICACION C-259-4-03-02-02

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 16 A Este No. 42C - MARGEN
 EJE
 FECHA:
 03-Jun-04

 DESCRIPCION:
 SUELO NATURAL

LIMITE LIQUIDO


No. De Golpes	35	25	20
Recipiente No	84	136	140
P1 gr.	45,03	37,56	41,40
P2 gr.	30,77	25,09	27,07
P3 gr.	5,96	4,38	4,09
% Humedad	57,5%	60,2%	62,4%

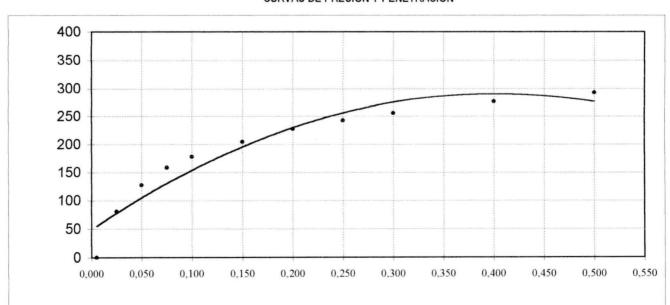
Límite Liquido	% _	60,70%
Límite Plástico	% _	26,33%
Indice de Plasti	cidad %	34,4%

LIMITE PLASTICO

Recipiente No	48	122	
P1 gr.	13,49	13,13	
P2 gr.	12,10	11,28	
P3 gr.	6,89	4,16	
% Humedad	26,68%	25,98%	

Indice de Grupo
A.A.S.H.T.O.
U.S.C.

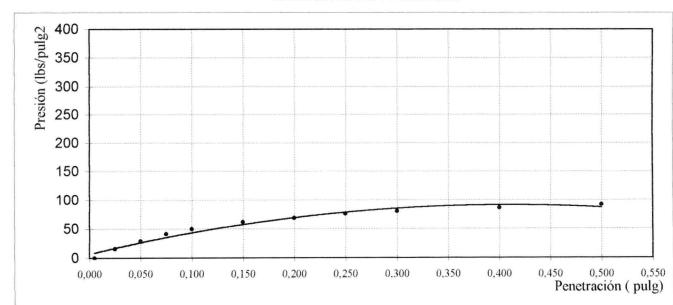
OBSERVACION


Firma:

Firma:

FL - 20		ENSA	YO DE CBR	INALTERADO		C-259-	4-03-02-02
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FE	CHA:	09-Jun-04
MARGEN:			PROF. m.	0,20/0,74 m	CE	BR:	1
UBICACIÓN			BARRENO	2	M	JESTRA	2
Molde No.		7 SIN SATU	JRAR			PESO UN	NITARIO
Lectura de expansión inicial		0			P-	muestra gr	87,9
ectura de expansión 1er día		0			V-	muestra c.c	49,14
ectura de expansión 2er día		0				HUM.	25,9
ectura de expansión 3er día		0			DE	EN,SEC gr/cc	1,421
ectura de expansión 4er día		0					
xpansión total %		0,0					
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				
0,005	0	0,00	0,00				
0,025	110,00	242,51	80,84				
0,050	173,00	381,40	127,13				
0,075	216,00	476,20	158,73				
0,100	242,00	533,52	177,84				
0,150	278,00	612,88	204,29				
0,200	309,00	681,23	227,08				
0,250	330,00	727,52	242,51				
0,300	348,00	767,21	255,74				
0,400	376,00	828,94	276,31				
0,500	399,00	879,64	293,21				
Humedad de penetr. %	25,9%						
CBR Correg. a 01	17,78						
CBR Correg. a 02	15,14						

CURVAS DE PRESION Y PENETRACION


GEOTECNOLOGO

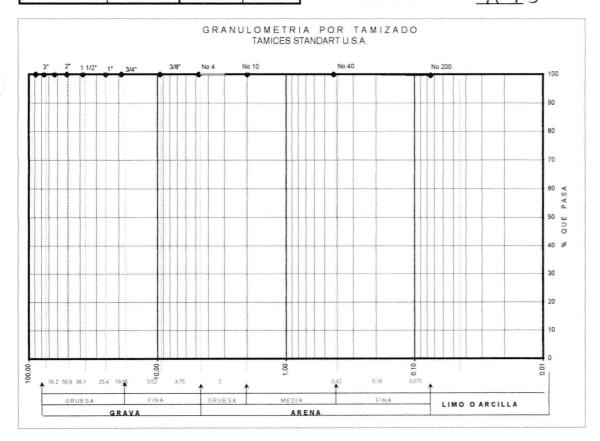
INGENIERO

FL - 20		ENSA	YO DE CBR	INALTERADO		C-259-	4-03-02-02
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECHA	ν:	09-Jun-04
MARGEN:			PROF. m.	0,20/0,74 m	CBR:		1
UBICACIÓN			BARRENO	2	MUES	TRA	2
Molde No.		7 SATUR	ADO			PESO UI	NITARIO
Lectura de expansión inicial		0			P-mue	stra gr	
Lectura de expansión 1er día		62			The second secon	estra c.c	
Lectura de expansión 2er día		81			% HUI		
Lectura de expansión 3er día		93			DEN,S	EC gr/cc	
Lectura de expansión 4er día		119					
Expansión total %		2,4					
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				
0,005	0	0,00	0,00				
0,025	21,00	46,30	15,43				
0,050	39,00	85,98	28,66				
0,075	56,00	123,46	41,15				
0,100	67,00	147,71	49,24				
0,150	84,00	185,19	61,73				
0,200	93,00	205,03	68,34				
0,250	103,00	227,08	75,69				
0,300	109,00	240,30	80,10				
0,400	117,00	257,94	85,98				
0,500	124,00	273,37	91,12				
Humedad de penetr. %	26,6%						
CBR Correg. a 01	4,92						
CBR Correg. a 02	4,56				1		

CURVAS DE PRESION Y PENETRACION

GFOTECNOLOGO

INGENIERO


FL-8 ANALISIS GRANULOMETRICO

C-259-4-03-02-03

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 03-Jun-04 **UBICACIÓN** Carrera 16 A Este N MARGEN EJE DESCRIPCION: SUELO NATURAL 0,74/2,00 m PROF.: GRADACION **HUMEDAD NATURAL** P1

P1=	1.036,3	P2=	4,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	4,0	0,4	99,6
FONDO	1.032,3	99,6	

1152 115,7 %HUM 22,4 Limite Liquido 53,90% Límite Plástico 27,56% Índice Plasticidad 26,3% Especificación: Gradacion tipo A sección 13 (IDU) 0,0 Grava (%) 0.4 Arena (%) 99,6 Finos (%) Clasificacion U. S. C. Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

_ingeniero

FL - 9 LIMITES Y CLASIFICACION C-259-4-03-02-03

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL
UBICACIÓN Carrera 16 A Este No. 42C - MARGEN EJE FECHA: 03-Jun-04
DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO No. De Golpes 24 14 31 53 Recipiente No 93 89 P1 gr. 28,27 35,06 34,88 P2 gr. 20,73 24,62 24,71 P3 gr. 6,03 5,48 7,29 % Humedad 54,5% 51,3% 58,4%

 Límite Liquido
 %
 53,90%


 Límite Plástico
 %
 27,56%

 Indice de Plasticidad
 %
 26,3%

LIMITE PLASTICO

	HVIITE I ENOTIC		
Recipiente No	23	153	
P1 gr.	17,15	14,36	
P2 gr.	14,93	12,23	
P3 gr.	6,93	4,45	
% Humedad	27,75%	27,38%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

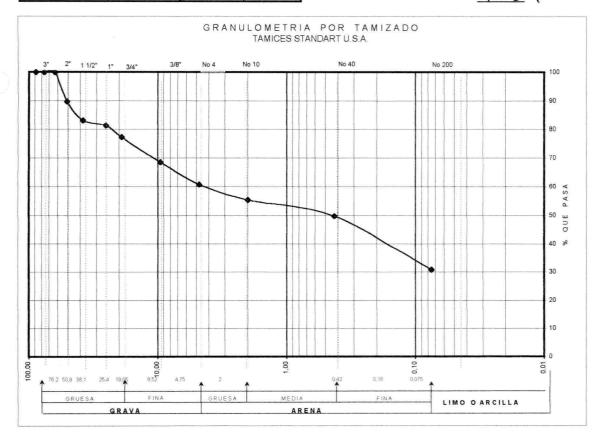
Firma:

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-03-03-01

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 02-Jun-04


 UBICACIÓN
 Carrera 16 A Este NMARGEN
 DERECHO
 DESCRIPCION:
 RECEBO

GRADACION

0,00/0,30 m

	GRADAC	TON	
P1=	3.187,9	P2=	2.206,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2*	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	328,0	10,3	89,7
1 1/2"	206,0	6,5	83,2
1"	58,0	1,8	81,4
3/4"	130,0	4,1	77,4
3/8"	280,0	8,8	68,6
4	250,0	7,8	60,7
10	172,0	5,4	55,3
40	178,0	5,6	49,7
200	604,0	18,9	30,8
FONDO	981,9	30,8	
- A U			

HUMEDA	AD NATURAL
P1	3752
P2	3444
P3	256,1
%HUM	9,7
Limite Liquido	22,75%
Límite Plástico	16,26%
Índice Plasticidad	6,5%
Especificación: Grad sección 13 (IDU)	dacion tipo A
Grava (%)	39,3
Arena (%)	29,9
Finos (%)	30,8
Clasificacion U. S. C.	6M-6C

OBSERVACIONES:

FIRMA:

ingeniero

FL - 9 LIMITES Y CLASIFICACION C-259-4-03-03-01

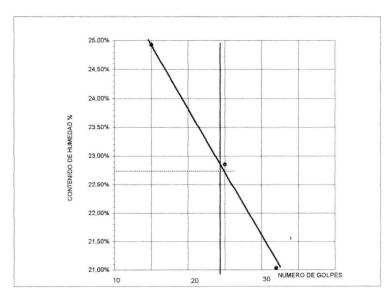
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 16 A Este No. 42C - MARGEN
 DERECHO
 FECHA:
 02-Jun-04

 DESCRIPCION: RECEBO
 DESCRIPCION: RECEBO
 DESCRIPCION: RECEBO
 DESCRIPCION: RECEBO
 DESCRIPCION: RECEBO

LIMITE LIQUIDO No. De Golpes 32 25 15 Recipiente No 8 11 3 P1 gr. 48,86 47,76 46,51 P2 gr. 42,85 41,37 39,85 P3 gr. 14,28 13,41 13,13 % Humedad 21,0% 22,9% 24,9%

 Límite Liquido
 %
 22,75%


 Límite Plástico
 %
 16,26%

 Indice de Plasticidad
 %
 6,5%

LIMITE PLASTICO

Recipiente No	114	107	
D1 ar	11,87	11,91	
P2 gr. P3 gr.	10,85	10,96	
P3 gr.	4,66	5,04	
% Humedad	16,48%	16,05%	

Indice de Grupo
A.A.S.H.T.O.
U.S.C.

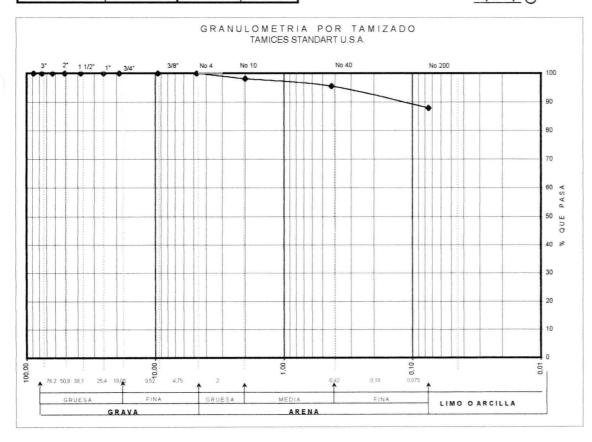
OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO

C-259-4-03-03-02



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 02-Jun-04

 UBICACIÓN PROF.:
 Carrera 16 A Este 1 MARGEN 0,30/2,00 m
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

GRADACION

P1=	198,1	P2=	24
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2*	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	3,5	1,8	98,2
40	5,3	2,7	95,6
200	15,2	7,7	87,9
FONDO	174,1	87,9	

DESCRIPCION:	SUELO NATURAL
HUME	DAD NATURAL
P1	272
P2	229,8
P3	31,7
%HUM	21,3
Limite Liquido	45,00%
Límite Plástico	22,52%
Índice Plasticidad	22,5%
Especificación: Gi sección 13 (IDU)	radacion tipo A
Grava (%)	0,0
Arena (%)	12,1
Finos (%)	87,9
Clasificacion U. S. C.	CL
Clasificacion AASHTO	A-7-6

OBSERVACIONES

FIRMA:

FL - 9 LIMITES Y CLASIFICACION

C-259-4-03-03-02

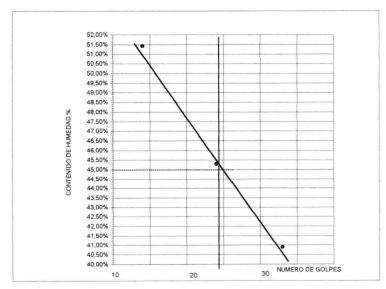
 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL

 UBICACIÓN
 Carrera 16 A Este No. 42C - MARGEN
 DERECHO
 FECHA:
 02-Jun-04

 DESCRIPCION:
 SUELO NATURAL

LIMITE LIQUIDO No. De Golpes 33 14 Recipiente No 74 42 73 P1 gr. 41,54 35,48 39,38 P2 gr. 31,8 26,82 28,07 P3 gr. 7,99 7,70 6,08 45,3% 40,9% 51,4% % Humedad

 Límite Liquido
 %
 45,00%


 Limite Plástico
 %
 22,52%

 Indice de Plasticidad
 %
 22,5%

LIMITE PLASTICO

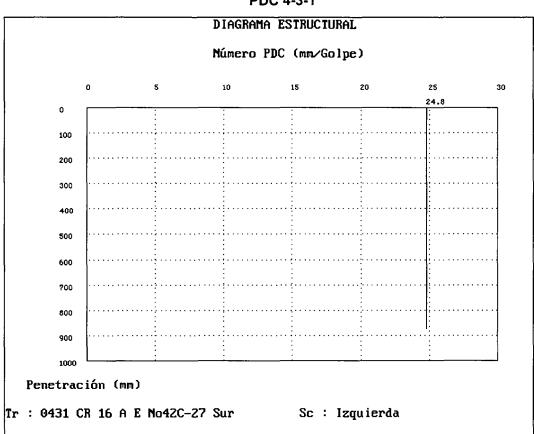
Recipiente No	25	24	
P1 gr.	20,70	19,9	
P2 gr.	18,36	17,64	
P3 gr.	7,76	7,80	
% Humedad	22,08%	22,97%	

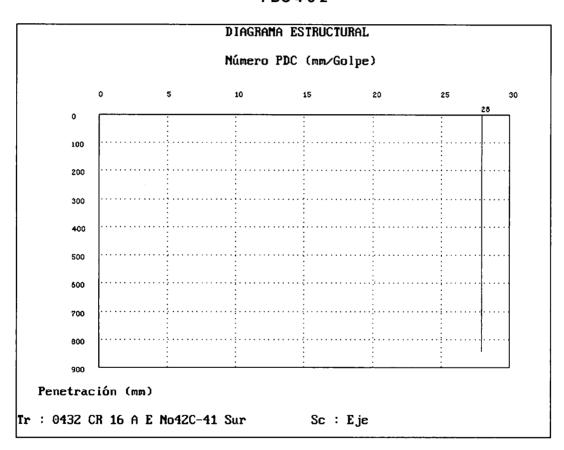
Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

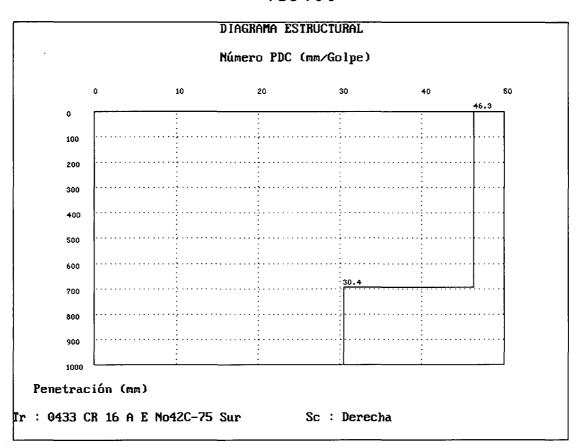
Firma:

Firma:




ENSAYOS DE PENETRACIÓN CON CONO

MOVILIDAD
Instituto de Desarrollo Urbano


PDC 4-3-1

PDC 4-3-2

PDC 4-3-3

PORTLAND CEMENT ASSOCIATION METHOD

	N	Metric Units		English Units	
TE DATA					
Madulus of Duntura	MR	44.00	ka/om2	502.16	noi
Modulus of Rupture			kg/cm2	583,16	psi
Thickness Madulus of Floatisity	H 54	19,10		7,52	in
Modulus of Elasticity	E1	273000		3.900.000	psi
Unit Weight	WT		kg/m3	133	pcf
Coef. of Thermal expansion	СТ	3,60E-06	7-0	2,00E-06	/°F
Poisson's ratio	<u>u</u>	0,15		0,15	
Radius of Relative Stiffness	0) (74,81	cm	29,45	in
Coefficient of Variation	CV	0,15		0,15	
NT DATA					16.5
Total Width	Tw	3,50	m	11,48	ft
Numbers of Lanes	NI	1,00		3,28	ft
Width Lane	W	3,66		12,01	ft
Slab Length	SI	3,50		11,48	ft
Concrete Shoulders	Sh	No		es or no)	
Doweled Joints	Dj	Yes		es or no)	
Tie Bars	Tb	Yes		es or no)	
Annual Growth Rate	Tca	0	%	0	%
Desing Period	Dp		Years	20	Years
Drying Shrinkage Coefficient	Lse	0,0002		0,0002	150 1000000000
TION DAVEMENT STRUCTU	IDE				
ATION PAVEMENT STRUCTU	JKE				
C.B.R.	CBR	6,00	%	6,00	%
			% k/cm2	6,00 187,83	% pci
C.B.R. K on Top off Sub Base	CBR K		k/cm2		
C.B.R. K on Top off Sub Base	CBR K	5,21 or Treated) =	k/cm2	187,83	
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base	CBR K se Untreated	5,21 or Treated) =	k/cm2	187,83	pci
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base	CBR K se Untreated Depth	5,21 or Treated) =	k/cm2 Tr	187,83	pci in
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base	CBR K se Untreated Depth Module	5,21 or Treated) =	k/cm2 Tr cm k/cm2	187,83 reated	pci in psi
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base	CBR K se Untreated Depth Module Depth Module	5,21 or Treated) = 15 3500	k/cm2 cm k/cm2 cm	187,83 reated	in psi in
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Between	CBR K se Untreated Depth Module Depth Module	5,21 or Treated) = 15 3500	k/cm2 cm k/cm2 cm	187,83 reated 5,91 50000,00	in psi in
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Betwee	CBR K se Untreated Depth Module Depth Module	5,21 or Treated) = 15 3500 e and Slab	k/cm2 cm k/cm2 cm k/cm2	187,83 reated 5,91 50000,00 0,65	in psi in psi
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Betwee MENTAL DATA Mean Annual Wind Speed	CBR K se Untreated Depth Module Depth Module	5,21 or Treated) = 15 3500 e and Slab	k/cm2 cm k/cm2 cm k/cm2	187,83 reated 5,91 50000,00 0,65	pci in psi in psi
C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Betwee	CBR K se Untreated Depth Module Depth Module	5,21 or Treated) = 15 3500 e and Slab	k/cm2 cm k/cm2 cm k/cm2	187,83 reated 5,91 50000,00 0,65	in psi in psi

PORTLAND CEMENT ASSOCIATION METHOD

AXLE	BY LSF			CON	CRETE FATIGUE ANAL	ISYS	CON	CRETE EROSION ANALIS	SYS
LOAD kips	LSF 1,10	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %
	Ruputui	re Module	583,2	Sum of S	Single Fatigue	91,54%		Sum of erosion Fatigue	4,33%
	Trial T	hickness	7,52	Sub Bas	e Subgrade K	187,83	Erosion	Doweled Joints	Yes
	Dowel	ed Joints	Yes	Concre	te Shoulders	No		Concrete Shoulders	No
INGLE A	AXLES								
19,80	21,78	318	131.400	0,545	143.542	91,5%	29,79	3.035.731	4,39
	Coment Ac	analation M	lathad						PCA 198
ortland	Cement As	sociation M	lethod						PCA 190
AXLE	BY LSF	Sociation M	letriod	CON	CRETE FATIGUE ANAL	ISYS	CON	CRETE EROSION ANALIS	
		TOTAL STRESS psi	EXPECTED	CONCRETE STRESS RATIO	CRETE FATIGUE ANAL ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	
LOAD	BY LSF LSF 1,10	TOTAL STRESS	EXPECTED	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS	FATIGUE PERCENT	CONCRETE	ALLOWABLE REPETITIONS	DAMAGE PERCENT
AXLE LOAD	BY LSF LSF 1,10	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE	ALLOWABLE REPETITIONS N	DAMAGE PERCENT
AXLE LOAD kips	BY LSF LSF 1,10	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT
AXLE LOAD kips	BY LSF LSF 1,10	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR Erosion	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %

VÍA 04-03

DISEÑO DE PAVIMENTO MÉTODO AASHTO

	
R	90%
Z _R	-1,282
So	0,45
Po	4,2
Pf	2,5
SN	2,9
Módulo de la subrasante (psi)	9000
N requerido	5,00E+05
N admisble	5,12E+05

COEFICIENTES DE CAPA		
CONCRETO ASFÁLTICO	0,35	
BASE ESTABILIZADA CON CEMENTO	0,18	
SUBBASE GRANULAR	0,11	

COEFICIENTES DE CAPA		
CONCRETO ASFÁLTICO	0,35	
BASE ESTABILIZADA CON CEMENTO	1,00	
SUBBASE GRANULAR	1,00	

CAPA	ESPESOR (cm)
CONCRETO ASFÁLTICO	7,5
BASE ESTABILIZADA CON CEMENTO	15,0
SUBBASE GRANULAR	20,0
sn	3,0

VIA 4-3

INSTITUTO DE DESARROLLO URBANO I. D. U.

ESTUDIOS Y DISEÑOS PARA LA CONSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES - PROGRAMA DE PAVIMENTOS LOCALES GRUPO 2

CONTRATO No. IDU-259 DE 2003

ESTUDIO GEOTECNICO PARA EL DISEÑO DE PAVIMENTOS (VIA ALTAMIRA SUR ORIENTAL)

IDU-259-GT-E- 4-4 ALTAMIRA SUR ORIENTAL (PPL 2004)

NOVIEMBRE 22 DE 2004

VERSION 0.0				
Vigente desde: 22/11/04				
ELABORO: Ing. Francisco Cervantes FECHA: Noviembre 22 de 2.004	REVISO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004	APROBO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004		
FIRMA: Hais lev-to	FIRMA: All	FIRMA: All		
CARGO: Ing. Especialista	CARGO: Director de Estudios y Diseños	CARGO: Director de Estudios y Diseños		

A.C.I. PROYECTOS S.A.

FQ14

CONTROL DE CAMBIOS DE DOCUMENTOS

IDENTIFICACIÓN DEL DOCUMENTO							
ELABORACIÓN MODIFICACIÓN ANULACIÓN							
IDENTIFICACIÓN DE QUIEN SUGIERE EL CAMBIO NOMBRE: JAIRO GARCIA POLO CARGO: DIRECTOR DE INTERVENTORIA							
JUSTIFICACIÓN DEL CAMBIO							
CONTRATO: IDU-259-03							
DOCUMENTO: IDU-259-GT-E- 4-4 ALTAMIRA SUR ORIGINAL							
VERSION: 0.0							
ACEPTADO EL CAMBIO? SI NO							
RESUMEN DEL CAMBIO O RAZÓN PARA NO ACEPTAR EL CAMBIO							
FIRMA DIRECTOR DE CALIDAD O ENCARGADO DEL FIRMA TITULAR DEL CARGO QUE APROBÓ EL							
PROYECTO PROCEDIMIENTO INICIAL							

A.C.I. PROYECTOS S.A.

FQ25-259-3

LISTA DE CHEQUEO DISEÑOS

P	R	O.	Y	Ε	C	Ī	O	:	

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

ESPECIALIDAD:

ESTUDIOS DE SUELOS

DOCUMENTO: IDU-259-GT-E-4-4 ALTAMINA SUR ORIENTAL

	REV. No		OBSERVACIONES	REV. No		OBSERVACIONES
	CUMPLE	NO CUMPLE	OBSERVACIONES	CUMPLE	NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la	as necesio	lades del Cli	ente)			
CRITERIOS DE REVISION:						
Se realizó el inventario de daños de la vía para los casos en que se requiere?						
2. Se aplicó correctamente el procedimiento de ensayos de laboratorio?						
Se realizaron la cantidad y tipo de ensayos establecida en la metodología?	/					
Se identifican los resultados de laboratorio de tal forma que permitan la trazabilidad de los mismos para cada vía?						
RESPONSABLE:	Ing. F. C	ervantes				
FIRMA:	40	2				
FECHA:	22/11	1/04				
VERIFICACION (Confirmar que los resultados del dise	ño cumple	en con los re	quisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Existe coincidencia entre el registro de campo de los apiques, los ensayos de laboratorio, los perfiles estratigráficos definitivos y las conclusiones del estudio?		7				
 Las recomendaciones para la rehabilitación de cada vía corresponde con el inventario de daños y los resultados de los ensayos de laboratorio de suelos. 						
		,				
RESPONSABLE:	Ing, M. A	lmanza	4			
FIRMA:	W	4				
FECHA:	221	1104				
VALIDACION (Confirmar que cumple con los requisitos	s para su	aplicación o	uso)			•
CRITERIOS DE VALIDACION				18		
Aprobación de Interventoría						
Aceptación del Cliente						
RESPONSABLE:						
FIRMA:		3.				
FECHA:			<u></u>			

7	Ci	A.C.I. PROYECTOS
		SA.

A.C.I. PROYECTOS S.A.

FQ25-259-9

LISTA DE CHEQUEO DISEÑOS

P	R	O	Υ	Ε	C	T	O	:		
_	c	D	=	0	ı	1	ır	۸	n	

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

ESPECIALIDAD:	
DOCUMENTO:	

DISEÑO ESTRUCTURAL DE PAVIMENTO IDU-259-GT-E-4-4 ALTAMRA SUR ORIGINAL

	REV. No. 0.0	OBSERVACIONES	REV. No. CUMPLE NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la	as necesidades de	el Cliente)		
CRITERIOS DE REVISION:				
Son adecuados los criterios para la selección de la capacidad de soporte del suelo de cada una de las vías				
Se realizaron los diseños para las alternativas de pavimentos previstas en la metodología.		EL ANALISIS ECONOMICO DE LAS ALTERNATIVAS SE MUESTRA EN EL DOCUMENTO DE PRESUPUESTOS		
 Los resultados del número de ejes equivalentes en el período de diseño corresponde con la tipología, uso y tráfico actual de la vía. 				
 Las alternativas de pavimentos diseñados corresponden a las alternativas de rehabilitación recomendada. 				
RESPONSABLE:	Ing. F. Cervantes	s		
FIRMA:	JPC.			
FECHA:	22/11/04			
VERIFICACION (Confirmar que los resultados del dise	ño cumplen con lo	os requisitos de entrada)		
CRITERIOS DE VERIFICACION:				
Los resultados definitivos del diseño de pavimento para cada alternativa corresponde con los diseños existentes de vías con características similares.				
2. Se tomaron los datos correctos de TPD cada 15 minutos, la tasa de proyección y la composición porcentual del tráfico según el estudio de tránsito.		,		
RESPONSABLE:	Ing. M. Almanza			
FIRMA:	ul	1		
FECHA:	22/11/01	4		
VALIDACION (Confirmar que cumple con los requisitos	s para su aplicacio	ón o uso)		
CRITERIOS DE VALIDACION				
1. Aprobación de Interventoría				
2. Aceptación del Cliente				
iş.				
RESPONSABLE:				
FIRMA:				
FECHA:				

ESTUDIO GEOTÉCNICO PARA EL DISEÑO DE PAVIMENTO VÍA 4-04 ALTAMIRA SUR ORIENTAL

TABLA DE CONTENIDO

1. IN	TRODUCCIÓN	1
2. LC	OCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO	3
2.1	Características geométricas	3
2.2	Características climáticas	3
3. IN	VESTIGACIONES REALIZADAS	5
3.1	Trabajos de campo	5
3.2	Ensayos de laboratorio	
4. CA	ARACTERÍSTICAS GEOTÉCNICAS INSTITUTO DE DESARROLO Urbano	8
4.1	Geología	8
4.2	Estabilidad de los taludes	8
4.3	Estado actual de las calzadas	8
4.4	Perfiles estratigráficos	8
4.4.1	Concreto Rígido	9
4.4.2	2 Capa de granular	9

4.4.3	Subrasante9
4.5	Capacidad de soporte10
5. TR	ÁNSITO11
6. DIS	SEÑO DE PAVIMENTO14
6.1	Solución de Rehabilitación 14
6.2	Diseño de pavimento
6.2.1	Consideraciones generales del método de la PCA 15
6.2.2	Factores de diseño 16
6.2.3	Resultados obtenidos pavimento rígido 17
6.2.4	Consideraciones generales del Método AASHTO 17
6.2.5	
7. ES	PECIFICACIONES Le Desarrollo Urbano 22
7.1	Concreto hidráulico
7.2	Suelo cemento
7.3	Capa granular tipo Subbase granular 22
7.4	Capa de concreto asfáltico 23
8. AN	ÁLISIS TÉCNICO DE ALTERNATIVAS24
8.1	Losas apoyadas sobre una capa de suelo cemento 24

8.2	Pavimento flexible
8.3	Alternativa recomendada25
9.	CONCLUSIONES Y RECOMENDACIONES
ANE	xos
ANE	XO 1: REGISTRO DE LOS APIQUES
ANE	XO 2: DETALLE DE ENSAYOS DE LABORATORIO
ANE	XO 3: ENSAYOS DE PENETRACIÓN CON CONO
ANE	XO 4: MEMORIAS DE CÁLCULO
ANE	XO 5: REGISTRO FOTOGRÁFICO MAYOR DE BOGOTÁ D.C.
	MOVILIDAD
	Instituto de Desarrollo Urbano

LISTA DE CUADROS

- Cuadro 1.1. Nomenclatura de la vía
- Cuadro 3.1. Profundidad de apiques
- Cuadro 5.1. Peso por eje en vehículos comerciales
- Cuadro 5.2. Número de repeticiones esperadas por cada tipo de eje, por carril
- Cuadro 5.3. Factores de daño para cada tipo de vehículo comercial
- Cuadro 6.1. Coeficientes de capa empleados en el diseño de pavimento
- Cuadro 6.2. Coeficientes de drenaje empleados en el diseño de pavimento

. DOGOTA D.C

MOVILIDAD

Instituto de Desarrollo Urbano

LISTA DE FIGURAS

Figura 2.1. Localización del proyecto

Figura 7.1. a 7.8 Esquemas para la construcción de juntas para

pavimento rígido

Figura 9.1. Esquema de localización de geodrén

LISTA DE FORMATOS TÉCNICOS

FT- 259-GT-4-04-1

Localización de apiques y perfiles

estratigráficos

FT-259-GT-4-04-2

Resultados de Investigación Geotécnica

1. INTRODUCCIÓN

En el siguiente informe se presentan y describen cada una de las actividades realizadas tanto en campo como en laboratorio y los resultados y conclusiones de los estudios e investigaciones de suelos efectuados para el diseño del pavimento de una vía localizada en el Barrio Altamira Sur oriental, en cumplimiento del Contrato IDU 259-2003 "Estudios y Diseños para la construcción y/o evaluación para rehabilitación de accesos a barrios locales – Programa de pavimento locales Grupo-2", suscrito entre el IDU y A. C. I. PROYECTOS S. A.

La vía se encuentra ubicada en el sur de la ciudad y se desarrolla en la Localidad de San Cristóbal. En el siguiente cuadro se presenta la nomenclatura de la vía:

Cuadro 1.1. Nomenclatura de la vía

Nomenclatura	De	Hasta
CL43 A S	KR 11 E	AK 13B E

Los estudios geotécnicos para el diseño del pavimento se efectuaron para cumplir con los objetivos que se presentan en forma resumida, a continuación:

 Mediante una evaluación superficial, determinar las condiciones actuales de la estructura existente

- Con la ejecución de investigaciones de campo y ensayos de laboratorio, determinar las condiciones físicas y mecánicas de las diferentes capas que conforman la estructura actual del pavimento y de la subrasante de la vía.
- Definir la solución de rehabilitación más apropiada para el pavimento, teniendo en cuenta las condiciones actuales de la vía, la subrasante, condiciones topográficas, condiciones de drenaje, etc.
- Con base en el tráfico que se espera durante un periodo de diseño de
 20 años, presentar dos alternativas de diseño del pavimento
- Determinar la estructura para los andenes

ALCALDÍA MAYOR
DE BOGOTÁ D.C.
MOVILIDAD
Instituto de Desarrollo Urbano

2. LOCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO

Tal como se enunció en la introducción, la vía estudiada se encuentra ubicada al sur de la ciudad y se desarrolla en el barrio Altamira Sur oriental, perteneciente a la Localidad de San Cristóbal.

En la Figura 2.1 se presenta un plano con la localización del proyecto.

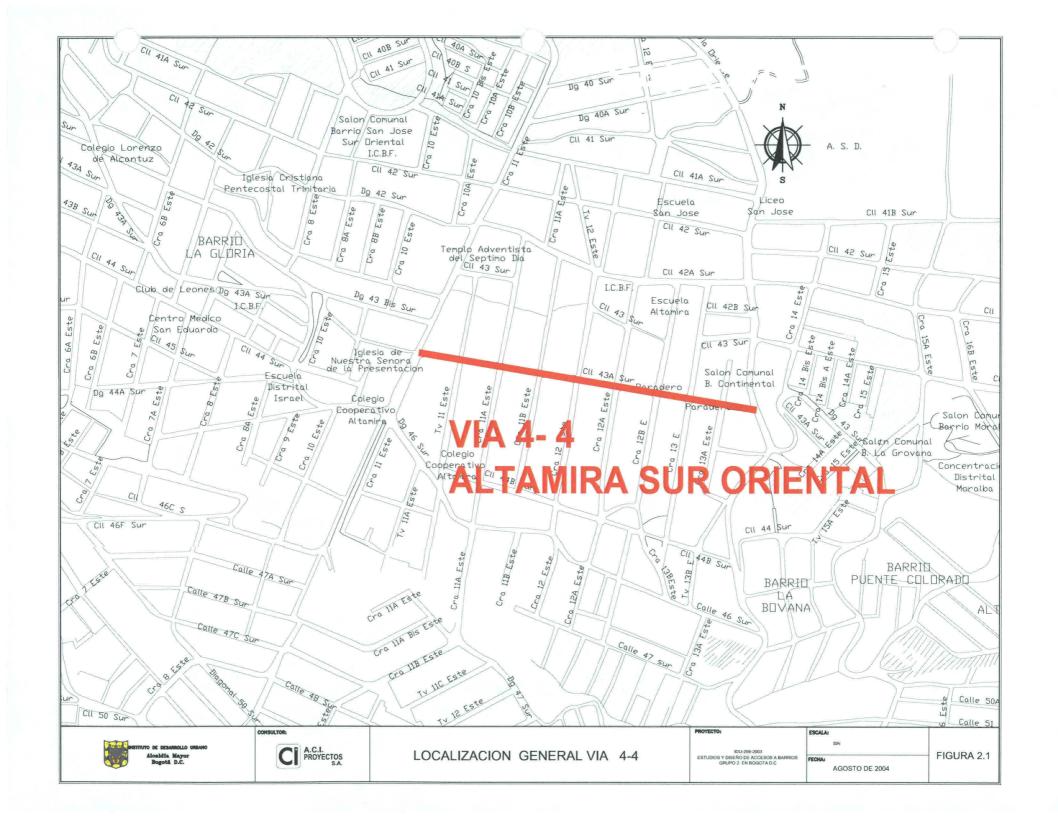
2.1 Características geométricas

La vía estudiada presenta las siguientes características:

TPD actual: 211

Tipo de terreno: ondulado

Número de calzadas: 1 LCA


Número de carriles por calzada: 2

Pendiente Longitudinal Máxima: 22.19%

Abscisas: K0+000 a K0+50.68

2.2 Características climáticas

En general, el clima de la Sabana de Bogotá, está influenciado por el desplazamiento de la zona de Convergencia Intertropical que interviene en el régimen pluviométrico, además, por encontrarse la ciudad de Bogotá en la cordillera oriental, el comportamiento de las lluvias pertenece al tipo de circulación Valle-Montaña.

La temperatura promedio anual es del orden de 14.8° con un máximo promedio de 21.6° y mínimo promedio de 5.3°.

Los meses más lluviosos corresponden a abril y mayo en un primer periodo y septiembre y octubre en el segundo.

3. INVESTIGACIONES REALIZADAS

Para cumplir con los objetivos establecidos, se llevaron a cabo trabajos de campo y ensayos de laboratorio, los cuales se describen a continuación:

3.1Trabajos de campo

Como parte de los trabajos de campo, se efectuó una inspección visual de la calzada para definir las condiciones actuales de la vía y se realizaron apiques localizados en promedio cada 50 m, los cuales se llevaron hasta una profundidad tal que se conociera la subrasante. La localización de los apiques se presenta en el Formato Técnico FT-259-4-04-1, incluido en el siguiente capítulo y su profundidad fue la siguiente:

Cuadro 3.1. Profundidad de apiques

Apique	Prof.
No	(m)
4-4-1	2.00
4-4-2	2.00
4-4-3	2.00
4-4-4	2.00
4-4-5	2.00
4-4-6	2.00
4-4-7	1.70
4-4-8	2.00

En cada investigación se elaboró el perfil estratigráfico determinando los espesores de las diferentes capas encontradas y registrando el nivel freático si se llegase a encontrar. Por otra parte, se efectuaron ensayos de penetración con el cono de Yoder, el cual consiste en hincar el cono de penetración mediante la caída libre de un martillo de 8.0 Kg de peso, registrando la cantidad de golpes que se requiere para penetrar cierta profundidad del estrato estudiado. Con los resultados obtenidos, se pudo determinar de manera indirecta el valor del CBR de la subrasante.

Los datos obtenidos de campo fueron valorados y procesados mediante el programa PDC, del paquete INPACO, de la Universidad del Cauca y el Instituto Nacional de Vías.

La correlación empleada para el cálculo del CBR fue la de TRRL, la cual corresponde a:

$$CBR = 302 * (PDC)^{-1.057}$$

Los valores así obtenidos, sirvieron para determinar en forma indirecta la resistencia de la subrasante a lo largo de la vía

El registro de los apiques se incluye en el Anexo 1 y los resultados de los ensayos de penetración con cono en el Anexo 3

3.2 Ensayos de laboratorio

En cada apique se recuperaron muestras representativas de las diferentes capas encontradas y sobre dichas muestras se realizaron ensayos de laboratorio que consistieron en:

Obtención de la humedad natural

- Granulometría por tamizado, incluyendo lavado sobre tamiz No. 200
- Límites de consistencia (líquido y plástico) sobre material que pasa el tamiz No. 40.
- CBR inalterado natural
- CBR inalterado sumergido

El detalle de los ensayos de laboratorio realizados se presenta en el Anexo 2.

4. CARACTERÍSTICAS GEOTÉCNICAS

4.1 Geología

En la Sabana de Bogotá se presentan afloramientos de rocas sedimentarias de origen marino y continental, con edades entre el cretáceo y el terciario y depósitos sedimentarios de edad pleistoceno a reciente. En orden cronológico, de la más antigua a la más reciente las unidades geológicas son: Formación Chipaque, Grupo Guadalupe, Formación Guaduas, Formación Cacho, formación Bogotá, Formación Arenisca La Regadera, Formación Usme, formación Tunjuelo y Formación Sabana.

4.2 Estabilidad de los taludes

El proyecto se desarrolla en una zona no hay cortes y terraplenes por lo cual no se requiere de un estudio de estabilidad.

MOVILIDAD

4.3 Estado actual de las calzadas o Urbano

La vía se encuentra con un pavimento rígido deteriorado, con grietas y fisuras de forma generalizadas .

4.4Perfiles estratigráficos

De las investigaciones realizadas, tanto de campo como de laboratorio, se presenta a continuación las características de cada una de las capas encontradas a lo larga de la vía:

4.4.1 Concreto Rígido

Se encuentra a lo largo del proyecto y su espesor varía entre 0.12 y 0.14 m. Su deterioro superficial es generalizado.

4.4.2 Capa de granular

Conformada por Grava limo-arcillosa de espesores variables entre 0.27 y 0.55m de humedad media.

Descripción: Grava limo-arcillosa.

% pasa No 4:37-59%

% pasa tamiz No 200: 14-36%

Límite líquido: NL-33%

Índice de plasticidad: NP-9%

Humedad natural: 8.4-13%

Clasificación U. S. C predominante: GM-GC. O Urbano

Clasificación AASHTO predominante: A-2-4 y A-1-b

4.4.3 Subrasante

Conformada por arcilla y limo arcilloso de consistencia media.

Descripción: Arcilla y limo arcilloso.

% pasa No 4:100%

% pasa tamiz No 200: 56-99%

Límite líquido: 24-49%

Índice de plasticidad: 7-32%

Humedad natural: 12-50%

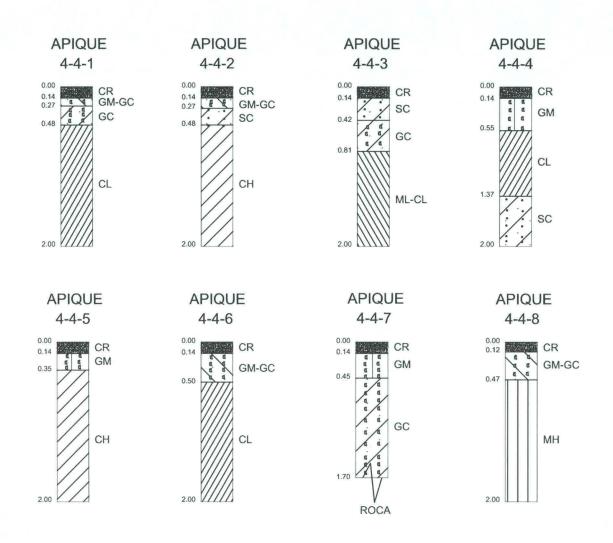
Clasificación U. S. C predominante: CH Y MH.

Clasificación AASHTO predominante: A-7-6 y A-7-5

CBR de cono: 3.8-13.1%

CBR inalterado en condiciones de humedad natural: 2.2-3.8%

CBR inalterado sumergido: 2.3-3.4%


4.5Capacidad de soporte A MAYOR

La capacidad de soporte de la subrasante se definió en términos de CBR, para lo cual se efectuaron ensayos de penetración con cono en los cuales se obtuvieron valores variables entre 3.8 y 13.1%. Los ensayos de CBR inalterado en condiciones de humedad natural varían de 2.2-3.8 % y saturado de 2.3-3.4%.

De acuerdo con lo anterior se adopta un valor de CBR de diseño de 3.0%.

En el Formato Técnico FT-259-GT-4-04-1 se presentan la localización de los apiques y los perfiles estratigráficos y en el Formato Técnico FT-259-GT-4-04-2, el resumen de los resultados de la investigación geotécnica

CR : Concreto Rígido

Alcaldía Mayor Bogotá D.C.

	FT-259-GT-4-4-1

SAN CRISTOBAL	DISERO: E. COY	SEPT. 30/2004	VERSION		
BARRIO ALTAMIRA SUR ORIENTAL	REVISO: F. CERVANTES	HOJA 2 DE 2	0.0		

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2

INVESTIGACION GEOTECNICA RESULTADOS PPL-2004

FT- 259 -GT 4-4-2

		I		LOC	ALID/	AD.				ΙV	ΊΑ	DE	SDE		HASTA	4	1	BARRIO			ECHA D	E				
CONTR	AIO:						4	_		CII 43 A	S	KR 11 E		AK 13 B			ALTAMIRA SUR ORIENTAL				ALIZACI		Septier	nbre 30 d	le 2004	
IDU 259 D	DE 2003	SA	AN CRIST	OBAL		4	1 -	4											RIENTAL		VERSIO	١	0,0			
	W ~		MUESTF		GR/	GRANULOMETRIA .			GRANULOMETRIA		ASTICIO)AD	CL	ASIFICAC	ION	Ī	TER	RENO		PROCTO	R MOD		1	CB	R %	
ABSCISA	2 %	l	MICEST	•	%	PASA	A TAN	MZ		ASTICIL	, AD		AAS	нто		IL				W opt.	%		IN	ALTERAC	00	
ABSCISA	APIQUE No.	No.	PROFUN.	Tipo de Capa	No.	No. 10		No. 200	LL(%)	LP(%)	IP(%)	usc	GRUPO	IG	Wn (%)	(Wn-LP)/IP	γt (KN/m³)	γd (KN/m³)	yd máx. (KN/m³)	% Opt.	Comp.	PDC	Wn (%)	SUM	EXP	
	·	1	0.14-0.27	Granular	37	30	26	14	21	14	7	GM-GC	A-2-4	0	8.3											
K0+015	4-4-1	2	0,27-0,48	Granular	49	39	33	18	22	13	9	GC	A-2-4	0	7,9		20,57	19,07	20,36	7,5	94				1	
		3	0,48-2,00	Subrasant		100	99	86	39	20	19	CL	A-6	16	27,8	0,41	• • • • • • • • • • • • • • • • • • • •		•			7,0_			1	
		1_	0,14-0,27	Granular	68	53	43	36	21	14	7	GM-GC	A-4	0	15,5	ļ	20,42	18,6	20,09	8,3	93				1	
K0+086	4-4-2	2	0,27-0,48	Granular	41	34	28	17	23	14	9	GC	A-2-4	0	7,9		20,52	18,72	20,52	8,3	91				ļ	
		3	0,48-2,00	Subrasant			100	99	61	29	32	СН	A-7-6	38	40,9	0,37						5,0	3,75	2,72	0,5	
		1	0.14-0.42	Granular	63	50	38	25	23	15	8	sc	A-2-4	0	10.2		21,12	19,16	21.08	8,2	91				 	
K0+162	4-4-3	1 2	0,14-0,42	Granular	48	39	33	18	23	14	9	GC	A-2-4	0	8.0	 	21,97	19.6	20.52	8.2	96				\vdash	
110 - 102	'''	3	0,81-2,00				94	56	22	15	7	ML-CL	A-4	1	20,5	0,79	2.,5,	10,0		5,2	-	3,8				
		1	0,14-0,55	Granular	46	41	37	16	NL	NP	NP	GM	A-1-b	0	8,9		21,17	19,44	20,77	8,4	94					
K0+248	4-4-4	2	0,55-1,37	Granular	ļ		100	81	47	22	25	CL	A-7-5	21	21,7							4,5			<u> </u>	
		3	1,37-2,00	Subrasant	100	99	96	47	38	20	18	SC	A-6	5	26,4	0,36									 	
	 	-	0.14-0.35	Granular	40	41	37	18	NL	NP	0 NP	GM	A-2-4	- 0	8.4		19.07	17.59	19.43	11.0	91				 	
K0+340	4-4-5	2	0.35-0.66	Subrasant	40	41	100	95	52	29	23	CH	A-7-6	26	50.3	0.93	19,07	17,59	19,43	11,0	91	4.0	2,94	2,72	0,5	
101340	4-4-5	3		Subrasant	-		100		50	23	27	CH	A-7-6	27	31.8	0,33				 		4,0	-2,54	2,12	0,5	
	+	<u> </u>	0,00 0,00				100					-			1 - 1 -	-,					-					
		1	0,14-0,50	Granular	59		47	21	19	13	6	GM-GC	A-2-4	0	11,3		19,75	17,75	19,43	11	91				1	
K0+395	4-4-6	2.7	0,50-1,48	Subrasant		100	99	87	36	19	17	CL	A-6	14	31,1	0,71						5,8	2,79	2,28	0,3	
		3-	1,48-2,00	Subrasant	100	88	87	68	47	22	25	CL	A-7-5	16	29,7	0,31										
	 	 			۱		I	_				-	100		40.7	ļ					ļ <u> </u>	ļ			 	
K0+445	4-4-7	1	0,14-0,45	Granular	45 60	38 58	31	19	33	24	9	GM GC	A-2-4	0	12,7	ļ <u> </u>				-		12.1			├	
	 	2	0,45-1,70	Subrasant	60	58	57	44	34	17	17	GC.	A-6	4	16,9		·					13,1			 	
	 	1	0.12-0.47	Granular	54	42	33	16	21	16	5	GM-GC	A-1-b	0	11.8	 	20.04	17,77	19,56	11,7	91	 			 	
K0+490	4-4-8	2		Subrasant	+		100	92	51	39	12	MH	A-7-5	16	38.7		1 25,04		,			6.7	2,2	3,38	0.5	
/**		3	1,24-2,00			100		64	54	38	16	MH	A-7-5	11	12,9										 ',	
				l							0			2		#¡DIV/0!									I	
ABORO :	E.0	C.A									REVISO);	F.	C.V					APROBO:		F	.c.v				

5. TRÁNSITO

Para la determinación de la estructura del pavimento, se tuvo en cuenta el tráfico vehicular estimado para los próximos 20 años. Para tal efecto, se emplearon los datos obtenidos en los análisis y cálculos efectuados en el Estudio de Tránsito, Capacidad y Niveles de Servicio, realizado para este proyecto por ACI Proyectos S. A.

En las memorias de cálculo, se presenta el detalle de las proyecciones

Para efectos de diseño en pavimento rígido, se empelará la metodología de la PCA. Por este motivo, se tendrá en cuenta la carga por eje de cada vehículo comercial de acuerdo con el siguiente cuadro:

Cuadro 5.1. Peso por eje en vehículos comerciales (KN)

Tipo de vehículo	Eje 1	Ej	e 2	Eje 3			
comercial	_ j 0 1	Simple	Tándem	Tándem	Trídem		
Buses y busetas		90	-	-	-		
Buses	NI	95					
alimentadores	No se considera el eje direccional	95	_	-	-		
C2p		80	-	-	-		
C2g		90	-	-	-		
C3-C4	a ooo.ona.	-	230	-	-		
C5		-	200	200	-		
>C5		-	200	-	240		

El eje direccional no se tiene en cuenta pues este aplica una carga mínima, inferior a 50 KN.

Con base en lo anterior, el número de repeticiones de cada eje para los diferentes tramos será el siguiente:

Cuadro 5.2. Número de repeticiones esperadas para cada tipo de eje, por carril

Tipo de eje	Carga por eje (KN)	Repeticiones					
	80	46971					
Simple	90	126833					
	95	205273					
Tándem	200	11018					
, andom	230	0					
Trídem	240	0					

Para efectos de diseño del pavimento flexible, se emplearon los siguientes factores de daño:

Cuadro 5.3. Factores de daño para cada tipo de vehículo comercial

Tipo Vehículo	Factor de daño
Buses	0.90
Buses alimentadores	2.50
Camión C-2p	1.14
Camión C2-g	3.96
Camión C3-C4	5.00
. Camión C5	4.34
Camión >C5	6.26

Con estos valores de factor de daño, el número de ejes equivalentes será:

 $N= 1.00 * 10^6$

Ver Memoria de cálculos.

6. DISEÑO DE PAVIMENTO

Con base en los análisis realizados, incluyendo los resultados de laboratorio y las características de la vía y el tráfico, se presenta a continuación la solución de la rehabilitación y el diseño del pavimento

6.1 Solución de Rehabilitación

La solución para la rehabilitación de la vía consiste en su reconstrucción total, teniendo en cuenta lo siguiente:

- La estructura actual presenta un deterioro generalizado
- La capa granular existente no cumple con especificaciones
- El diseño geométrico establece que se mantendrá la rasante actual, por lo cual se hace necesaria la excavación en un espesor equivalente a la estructura del pavimento.

MOVILIDAD

6.2 Diseño de pavimento

Se presentarán dos alternativas de diseño a saber:

 Losas de concreto de módulo de rotura de 4.3 Mpa a los 28 días apoyadas sobre una capa de suelo cemento de resistencia a la compresión a los 7 días de 2.1 MPa y un espesor de 200 mm

Pavimento de tipo flexible

Para la determinación del espesor de las losas se empleó el método de la PCA, el cual se describe a continuación:

6.2.1 Consideraciones generales del método de la PCA

El método de la PCA tiene en cuenta las siguientes consideraciones:

- Además de involucrar las consideraciones analíticas obtenidas por Westergaard, Pickcett y Ray, tiene en cuenta los resultados y el funcionamiento observados en pruebas experimentales de la AASHTO y modelos a escala como el ensayo de Arlington.
- Este método tiene en cuenta además del grado de transferencia de carga entre losas, el efecto de usar bermas ligadas al pavimento, las cuales reducen los esfuerzos de flexión y las deflexiones producidas por las cargas de los vehículos
- Se tienen en cuenta dos criterios de diseño: A) Fatiga, con el cual se garantiza que los esfuerzos del pavimento producidos por la acción repetida de las cargas se encuentren dentro de límites de seguridad y que se presente la fatiga por agrietamiento. B) Erosión, para limitar el efecto de deflexión en los bordes de las losas, juntas y esquinas y con ello controlar la erosión del suelo de fundación y de los materiales de las bermas. Este criterio es necesario pues fallas como el bombeo, el desnivel de losas y el deterioro de bermas son independientes de la fatiga.

6.2.2 Factores de diseño

Una vez de elegir el tipo de pavimento por construir, la subbase sobre la cual se apoyarán las losas, tipo de transferencia de carga entre losas y la presencia o no de bermas se deben tener en cuenta los siguientes factores:

6.2.2.1 Resistencia del concreto a la flexión

Se tiene en cuenta para el procedimiento de diseño por el criterio de fatiga y con él se controla el agrietamiento del pavimento bajo la acción repetida de cargas vehiculares. Para este caso se utilizarán losas de concreto con una resistencia a la flexión, medida por ensayos de módulo de rotura a los 28 días de 4.3 MPa

6.2.2.2 Capacidad de soporte de la subrasante

Se mide en términos del módulo de reacción (K), el cual se puede estimar con el CBR, ya que no es indispensable determinar el valor exacto del módulo K, ya que variaciones no muy grandes de él, prácticamente no afectan los espesores de pavimento.

Para un valor de CBR de 3.0% y una base estabilizada con cemento de 15.0 cm de espesor, se tiene un valor de K combinado de:

Instituto de Desarrollo Urbano

 $K_{Combinado} = 4.19 \text{ Kg/cm}^2$

6.2.2.3 Tránsito

Se tendrán en cuenta el número y la magnitud de las cargas por eje que se esperan durante el periodo de diseño, los cuales fueron calculados en el capítulo anterior.

6.2.2.4 Factor de seguridad de carga

El método de diseño exige que las cargas reales esperadas se multipliquen por un factor de seguridad de carga. Para este caso se adopta un valor de factor de seguridad de carga (Fsc) de 1.1

6.2.3 Resultados obtenidos pavimento rígido

En el Anexo 4 se presenta la memoria de cálculo para la determinación de los espesores de losa requerido.

La estructura recomendada será:

Losa de concreto de MR=4.3 Mpa: 210 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 200 mm

Para el diseño del pavimento flexible se utilizará la metodología desarrollada por la AASHTO

6.2.4 Consideraciones generales del Método AASHTO

Después de muchos años de investigación, la AASHTO, definió una metodología de diseño, en la que ha integrado varios factores o variables entre las cuales se encuentran:

6.2.4.1 Tránsito

Representado por el número de ejes equivalentes de 8.2 toneladas que utilizarán la vía en el carril de diseño durante un período determinado de tiempo.

De acuerdo con el cálculo presentado en el capítulo anterior, el valor del número de ejes equivalentes durante el periodo de diseño será:

 $N = 1.00 * 10^6$

6.2.4.2 Confiabilidad

Se refiere al nivel de probabilidad que tiene una estructura de pavimento diseñada para durar a través del período de análisis, tomando en cuenta las posibles variaciones del tráfico previstas así como las del modelo de comportamiento AASHTO, proporcionando un nivel de confiabilidad R que asegure que las secciones del pavimento duren el período para el cual fueron diseñadas. De acuerdo con el tipo de vía, el valor adoptado de confiabilidad es del 90% con el cual el valor de Desviación Normal Zr será de –1.282.

6.2.4.3 Índice de servicio:

Es la habilidad específica de una sección de pavimento para servir al tráfico. Para efectos del diseño se utiliza el valor de ΔPSI que se define como:

.CALDIA MAYOR

 $\Delta PSI = Po - Pf$

DE BOGOTÁ D.C.

siendo

MOVILIDAD
Instituto de Desarrollo Urbano

Po: Índice de serviciabilidad inicial=4.2

Pf: Índice de serviciabilidad final=2.5

6.2.4.4 Caracterización de los Materiales de las Capas de Pavimento:

Las diferentes capas que conforman la estructura del pavimento están caracterizadas por el "Coeficiente de Capa" que corresponde a una medida de la habilidad relativa de una unidad de espesor de un material dado para funcionar como componente estructural del pavimento.

El coeficiente de capa para cada material será:

Cuadro 6.1. Coeficientes de capa empleados en el diseño del pavimento

Tipo de material	Coeficiente de capa (a _i)
Concreto asfáltico tipo MDC-2	0.35
Concreto asfáltico tipo MDC-1	0.35
Capa granular tipo base estabilizada con cemento	0.18
Capa granular tipo subbase	0.11

6.2.4.5 Coeficiente de drenaje

Por las condiciones topográficas del terreno y las características de los materiales que se van a utilizar en las capas, se emplearán los siguientes coeficientes de drenaje:

Cuadro 6.2. Coeficientes de drenaje empleados en el diseño del pavimento

Tipo de material	Coeficiente de drenaje (mi)
Concreto asfáltico tipo MDC-2	1.0
Concreto asfáltico tipo MDC-1	1.0
Capa granular tipo base estabilizada con cemento	1.0
Capa granular tipo subbase	1.0

6.2.4.6 Módulo de la subrasante

De acuerdo con lo descrito en el capítulo 4, el CBR de diseño corresponde 3.0%

El módulo de la subrasante se obtuvo con base en la ecuación de la AASHTO:

ESBR = 1500*CBR (psi), con la cual,

ESBR = 1500*3.0 = 4500 (psi)

6.2.4.7 Número estructural (Sn)

El número estructural requerido para el período de diseño se obtiene con base en la siguiente ecuación:

 $Log(N) = ZR*So+9.36*log(SNr+1)-0.20+(\Delta PSI/(4.2-1.5)/(0.4+1094/(SNr+1)^{5.19}) + 2.32*log(ESBR)^{18.07} + 2.32*log(ESBR$

en la cual,

N: Número de ejes equivalentes

ZR: Desviación normal que depende del nivel de confiabilidad R=-1.282

So: Desviación estándar total=0.45

SN: Número estructural requerido (")

ΔPSI: Po - Pf

ESBR = Módulo de resiliencia de la subrasante

6.2.5 Resultados obtenidos - Método AASHTO

En las memorias de cálculo se incluye el detalle de la determinación de los espesores de cada capa

El número estructural requerido será de:

Sn = 4.20"

El cual se obtiene con la siguiente estructura:

Capa de rodadura en concreto asfáltico tipo MDC-2: 60 mm

Base asfáltica en concreto asfáltico tipo MDC-1: 70 mm

Base estabilizada con cemento: 200 mm

Subbase granular: 250 mm

7. ESPECIFICACIONES

Las diferentes capas que conformarán la estructura del pavimento, deberán cumplir con los siguientes requerimientos:

7.1 Concreto hidráulico

Las losas de concreto hidráulico tendrán un módulo de rotura de 4.3 MPa.

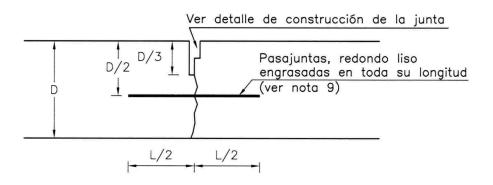
Los materiales por emplear, como son cemento, agua, agregado fino y agregado grueso, deberán cumplir con los requerimientos establecidos en el artículo 500 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

7.2Suelo cemento

La capa de suelo cemento deberá cumplir con todos los requerimientos establecidos en el artículo 341 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

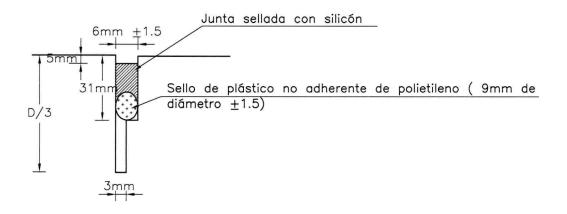
7.3 Capa granular tipo Subbase granular

La capa granular tipo subbase, deberá cumplir con las especificaciones establecidas en las normas IDU



7.4 Capa de concreto asfáltico

Los materiales por emplear en la construcción de las capas de base asfáltica (MDC-1) y rodadura (MDC-2) deberán cumplir con las Normas de construcción del INV – 1996, artículo 450



CORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

D= ESPESOR DE LA LOSA DE PAVIMENTO

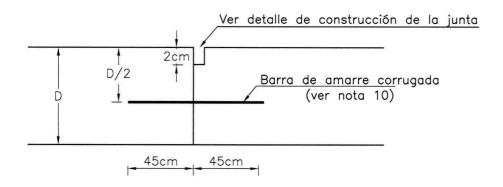
DETALLE DE CONSTRUCCIÓN DE LA JUNTA

NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

La ranura inicial de 3 mm. para debilitar la sección deberá ser hecha en el momento oportuno para evitar el agrietamiento de la losa, la pérdida de agregados en la junta, o el desportillamiento. El corte adicional para formar el depósito de la junta deberá efectuarse cuando menos 72 horas después del vaciado.

THE PARTY NAMED IN	TITUTO DE DESARROLLO URBANO
Fy	Alceldia Mayor
	Bogota D.C.



RTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

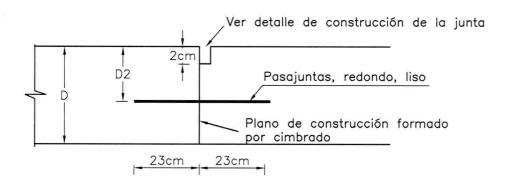
PROTECTOR	VIA
IDU-259-2003	
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES	FECH
GRUPO 2.	

4-4 sin FIGURA 7.1 OCTUBRE DE 2004

CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)

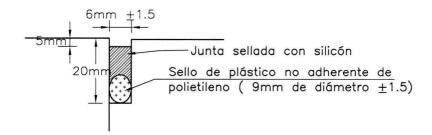
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA



NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.


MISTITUTO DE DESARROLLO URBANO	A.C.I.	CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON	IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-4	SIN	FIGURA 7.0
Alcaldia Mayor Bogotá B.C.	PROYECTOS	PASAJUNTAS (TIPO 2)		OCTUBR	E DE 2004	FIGURA 7.2

CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 3)

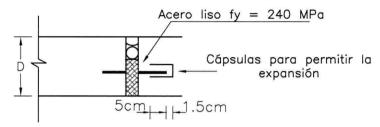
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA

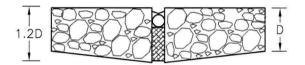
NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

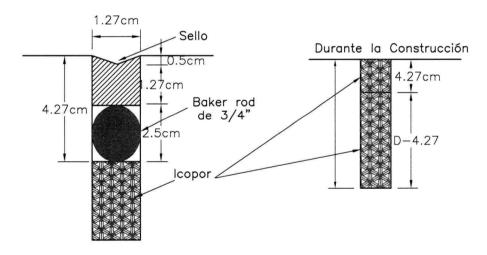
CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 3)


PROTECTOR	٧
IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GENERO 2	FI
	- 1

SIN
_


FIGURA 7.3

JUNTA DE EXPANSIÓN TIPO 4


JUNTA DE EXPANSIÓN CON DOVELAS (TIPO 4A)

JUNTA DE EXPANSIÓN SIN DOVELAS (TIPO 4B)

DETALLE DE LA JUNTA

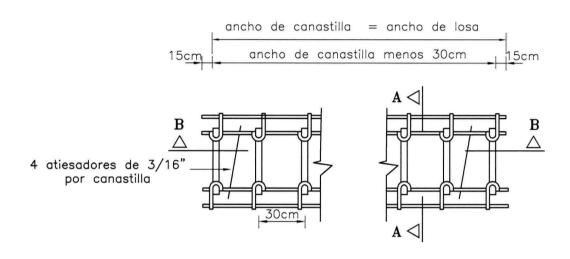
NOTA:

CONSULTOR

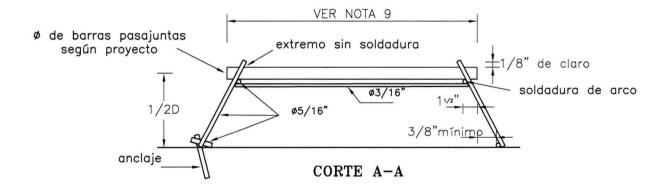
Cuando se tenga la losa conformada, se procederá a retirar el icopor de la parte superior y se construirá la estructura de sello.

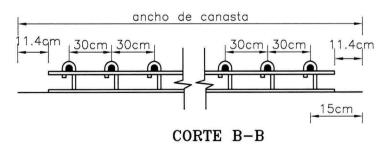
JUNTA DE EXPANSIÓN TIPO 4

	A.C.I.
U	PROYECTOS


ESTI Y/C

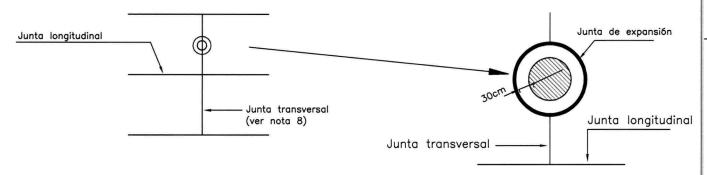
IDU-259-2003	
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE	FE
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	-

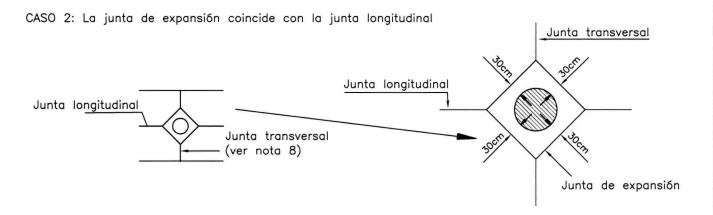

VIA	ESCALA:
4-4	SIN
FECHA:	
ост	UBRE DE 2004

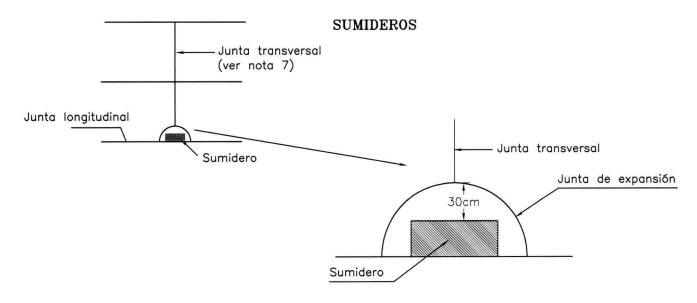

FIGURA 7.4

CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN

VISTA EN PLANTA

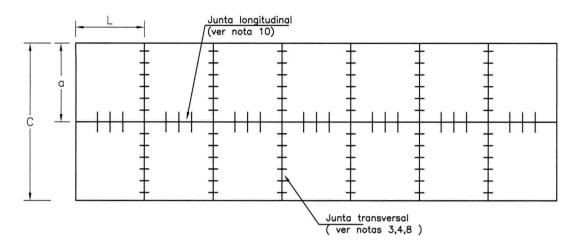





4	CONSULTOR:		PROYECTO:	WA	ESCALA:	
MISTITUTO DE DESARROLLO URBANO	A.C.I.		IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-4	SIN	FIGURA 7.5
Alcaldia Mayor Bogotá B.C.	PROYECTOS	Canastas pasajuntas en juntas transversales de contracción		FECHA: OCTUBE	RE DE 2004	FIGURA 7.5

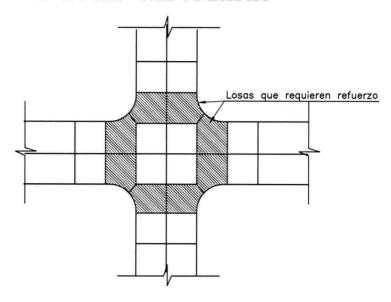
CASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCIÓN

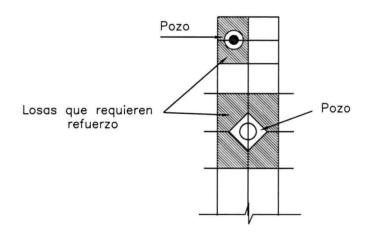
CASO 1: La junta de expansión no concide con la junta longitudinal

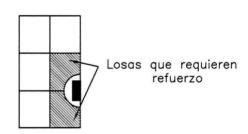


MODULACIÓN DE LOSAS

NOTAS GENERALES:


- El ancho de la placa (a) será la mitad de la calzada C/2.
 La relación de esbeltez (L/a) deberá estar entre 1.0 1.4
 Las juntas transversales serán de contracción aserradas con pasajuntas (tipo 1)
- 2. Donde se termine la fundida del día se construirá una junta transversal de
- 3. construcción (tipo 3). Esta junta deberá coincidir siempre con una junta
- 4. transversal de contracción. La junta longitudinal será de construcción con pasajuntas (tipo 2).
- Se emplearon juntas de expansión tipo 4A (con dovelas) cuando se presenten 5. cambios importantes en la dirección de la vía.
- 6. Para el caso de pozos y sumideros se empleará la junta de expansión tipo 4B. La modulación de las losas deberá ajustarse a la presencia de obras hidráulicas
- 7. como pozos de inspección y sumideros de tal manera que la junta transversal
- 8. coincida con dichas estructuras, manteniendo la relación de esbeltez. La longitud y diámetro de las barras pasajuntas dependerán del espesor de losa según el siguiente cuadro:


ESPESOR DEL PAVIMENTO		RO DEL ADOR		
(Cm)	(Cm)	(Pulg)	(Cm)	(Cm)
16-18	2.22	7/8"	35	
19-20	2.54	1"	35	30
21-23	2.54	1*	40	24
24-25	2.54	1*	45	19
26-28	2.54	1*	45	15


- 10. La barra de amarre para la junta longitudinal de construcción será de 90cm de longitud y 1/2" de diámetro de acero de 420 MPa. Se colocarán 3 por losa.
- 11. Algunos de los detalles han sido tomados de los Criterios y Especificaciones para Diseño y Construcción de Pavimentos de Concreto Hidraulico 2003. ASOCRETO.

	CONSULTOR:		PROYECTO:	VIA	ESCALA:	
INSTITUTO DE DESARROLLO URBANO	A.C.I.		IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-4	SIN	FIGURA 7.7
Alonidia Mayor Bogetä D.C.	PROYECTOS	MODULACIÓN DE LOGAS	YIO EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	OCTUBRI	DE 2004	FIGURA 7.7

MODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

NOTA:

- 1. Todas las losas asimétricas requieren de refuerzo
- El refuerzo consistirá en varillas Ø1/2" cada 25cm en las dos direcciones.
 El refuerzo se colocará a una distancia de D/3 medida desde la parte superior de la losa.

of Charles	BRETTTUTO DE DEBARBOLLO URBANO	
6 4 4 5 C	Alouldia Mayor	- 12
	Bogotá D.C.	

PROYECTO:	1
IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	
Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2	•
GROPO 2.	1

WA	ESCALA:	1
4-4	SIN	
FECHA:		1
OCTUB	IRE DE 2004	ı

FIGURA 7.8

8. ANÁLISIS TÉCNICO DE ALTERNATIVAS

Desde el punto de vista técnico las dos alternativas son viables y sus ventajas y desventajas son las siguientes:

8.1 Losas apoyadas sobre una capa de suelo cemento

Las ventajas y desventajas que se tienen al implementar esta alternativa son las siguientes:

- Requiere de una profundidad de excavación del orden de 0.41 m
- Si el mezclado se hace en vía, se requiere del empleo de maquinas mezcladoras rotativas que garanticen un buen mezclado con el cemento.

DE BOGOTA D.C.

- Si se mezcla en planta, se facilita el proceso constructivo
- El material no es fácilmente erosionable, lo cual es favorable para evitar el fenómeno de bombeo en las losas
- En época de lluvias el rendimiento en el proceso constructivo se ve diezmado
- Las labores para mantenimiento son mínimas y se requieren en un lapso considerable de tiempo, aproximadamente cada 5 años
- El costo inicial de inversión es mayor que en el caso de pavimento flexible

8.2 Pavimento flexible

Sus ventajas y desventajas son las siguientes:

- Requiere de excavaciones del orden de 0.58 m.
- En época de lluvia los rendimientos de construcción disminuyen notablemente
- Su costo inicial es menor que la alternativa en pavimento rígido
- Su mantenimiento requiere de labores de parcheo y sello de fisuras cada 3 años aproximadamente

8.3 Alternativa recomendada

Desde el punto de vista técnico, cualquiera de las dos alternativas presentadas podrá implementarse, sin embargo, teniendo en cuenta el tipo de pavimento de las calles aledañas, se recomienda implementar la solución con pavimento rígido.

9. CONCLUSIONES Y RECOMENDACIONES

De los análisis y descripciones anteriores se deducen las siguientes conclusiones y recomendaciones:

- La vía denominada 4-04, Altamira Sur oriental presenta un pavimento rígido completamente deteriorado
- La subrasante natural encontrada corresponde a suelos arcillosos de consistencia media
- Por las condiciones actuales de la vía, se recomienda como solución de rehabilitación la reconstrucción total de la estructura del pavimento, que por las condiciones topográficas y los pavimentos existentes en la zona, se recomienda que sea en concreto hidráulico
- De acuerdo con las características de la subrasante y el tráfico esperado en el tiempo de diseño, la alternativa para la estructura del pavimento es la siguiente:

Losa de concreto de MR 4.3 Mpa: 210 mm

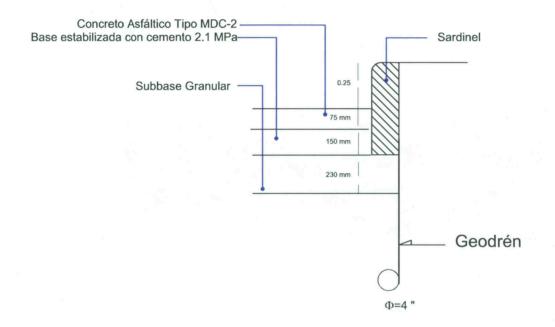
Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 200 mm

 Los diseños presentados tienen como premisa que la vía contará con un adecuado sistema de drenaje superficial. Para el drenaje subsuperficial, se deberán colocar, tal como lo muestra la figura 9.1,

filtros tipo geodrén o similar conectados a los sumideros o pozos de aguas lluvias. Estos filtros se deberán colocar en ambos costados de la vía.

• De acuerdo con las características de la subrasante, se recomienda para los ándenes la siguiente estructura

Adoquín: 6.0 cm


Arena: 4.0 cm

Subbase granular: 30.0 cm

 Las conclusiones y recomendaciones presentadas en este informe, están basadas en investigaciones puntuales realizadas a lo largo de la vía, por lo cual es factible que durante la construcción se presenten condiciones diferentes a las consideradas en el presente estudio. En caso de que esto suceda, se deberá informar a la firma consultora para recomendar las medidas del caso

MOVILIDAD
Instituto de Desarrollo Urbano

ESQUEMA DE LOCALIZACION DE GEODREN

Nota:

1. El tubo del geodrén se conectará al alcantarillado pluvial.

MOVILIDAD
Instituto de Desarrollo Urbano

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-1

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43 A S No. 14-14

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTRA	4	DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION Y OBSERVACIONES
0,00			- u	0.00-0.14 Placa en concreto hidráulico con agrietamientos.
	1	0.14-0.27	Alterada	0.14-0.27 Grava limo-arcillosa amarilla de humedad media.
0,50	2	0.27-0.48	Inalterada	0.27-0.48 Grava arcillosa amarilla de humedad media. Con tamaños > 6 ".
1,00	i			
	3	0.48-2.00	Alterada	0.48-2.00 Arcilla limosa habana y café de plasticidad media y humedad baja.
1,50		<u> </u>		
2,00				
				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No. 4-4-2 REALIZÓ: E.C.A FECHA: SEPT. 30 DE 2004

LOCALIZACIÓN: CII 43

CII 43 A S No. 11A-17 E

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTR	4	DESCRIPCIÓN Y ORSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES
0,00				0.00-0.14 Placa en concreto hidráulico con agrietamientos y hundimientos.
	1	0.14-0.27	Inalterada	0.14-0.27 Grava limo - arcillosa amarillo de humedad humedad. Con tamaños >4
0,50	2	0.27-0.48	Inalterada	0.27-0.48 Arena arcillosa habana de humedad media. Con grava de tamaños > 6".
1,00				
1,50	3	0.48-2.00	Inalterada	0.48-2.00 Arcilla amarilla-habana de plasticidad alta , humedad media consistencia blanda a media.
2,00				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-3

REALIZÓ:

E.C.A

FECHA: SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43A S. N.11A-86 E

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTRA	4	DECORIDATION V ORGERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES
0,00				0.00-0.14 Placa en concreto hidráulico con agrietamientos y hundimientos.
	1	0.14-0.42	Inalterada	0.14-0.42 Arena arcillosa amarilla de humead media con tamanos de 5".
0,50	2	0.42-0.81	Inalterada	0.42-0.81 Grava arcillosa habana de humedad media con tamanos >5 ".
1,00				
1,50	3	0.81-2.00	Alterada	0.81-2.00 Limo areno-arcilloso gris - habana con raices finas y oxidaciones de plasticidad baja y humedad media.
2,00				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-4

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43A S No.12-05

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTRA	Α	DESCRIPCIÓN Y ORGEDVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES
0,00	-			0.00-0.14 Placa en concreto hidráulico con agrietamientos y hundimientos.
0,50	1	0.14-0.55	Inalterada	0.14-0.55 Grava limosa habana de humedad alta. Con tamaños > 4".
1,00	2	0.55-1.37	Alterada	0.55-1.37 Arcilla limosa habana - amarilla de plasticidad media a alta y humedad media.
1,50	3	1.37-2.00	Alterada	1.37-2.00 Arena arcillosa amarilla de humedad media.
2,00				
				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-5

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43A S No 12A-42 E

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTRA	Δ	
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES
0,00				0.00-0.14 Placa en concreto hidráulico con agrietamientos y hundimientos.
	1	0.14-0.35	Inalterada	0.14-0.35 Grava limosa amarilla de humedad media, con tamaños de 5".
0,50	2	0.35-0.66	Inalterada	0.35-0.66 Arcilla amarilla ocre de plasticidad alta, humedad media a alta consistencia blanda a media.
1,00				
1,50	3	0.66-2.00	Alterada	0.66-2.00 Arcilla habana de plasticidad alta y humedad media.
2,00				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-6

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43A S No.12B-33 E

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTRA	4	DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION 1 OBSERVACIONES
0,00				0.00-0.14 Placa en concreto hidráulico con agrietamientos y hundimientos.
0,50	1	0.14-0.50	Inalterada	0.14-0.50 Grava limo-arcillosa amarilla de humedad media, con tamaños de 4".
1,00	2	0.50-1.48	Inalterada	0.50-1.48 Arcilla limosa amarilla ocre de plasticidad media, humedad baja y consistencia blanda a media.
		•		
1,50				
	3	1.48-2.00	Alterada	1.48-2.00 Arcilla limosa gris verdosa de plasticidad media a alta y humedad media.
2,00				2.00 FIN DEL APIQUE

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-7

REALIZÓ:

E.C.A

FECHA: SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43 A S No. 13 A-05

REVISÓ:

F.C.V

HOJA No:

PROF.		MUESTRA	4	DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION Y OBSERVACIONES
0,00				0.00-0.14 Placa en concreto hidráulico con agrietamientos.
0,50	1	0.14-0.45	Alterada	0.14-0.45 Grava limosa café de humedad media, con tamanos 4".
1,00	2	0.45-1.70	Alterada	0.45-1.70 Grava arcillosa habana-amarilla de humedad alta, con
	2	0.45-1.70	Allerada	0.45-1.70 Grava arcillosa habana-amarilla de humedad alta, con sobretamanos > 6".
1,50				
				1.70 FIN DEL APIQUE - FORMACION ROCOSA.
2,00				
	1			

REGISTRO DE PERFORACIÓN

APIQUE No.

4-4-8

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 43A S N. 13B E

REVISÓ:

F.C.V

HOJA No:

1 0.12-0.47 Inalterada 0.12-0.4 tamaño: 1,00 2 0.47-1.24 Inalterada 0.47-1.2 consiste 1,50 3 1.24-2.00 Alterada 1.24-2.0	DESCRIPCIÓN Y OBSERVACIONES
1 0.12-0.47 Inalterada 0.12-0.4 tamaño: 1,00 2 0.47-1.24 Inalterada 0.47-1.2 consiste 1,50 3 1.24-2.00 Alterada 1.24-2.0	DESCRIPCION Y OBSERVACIONES
1,50 2 0.47-1.24 Infalterada consiste c	12 Placa en concreto hidráulico con agrietamientos. 47 Grava limo-arcillosa amarilla de humedad media, con sobre s >4 ".
3 1.24-2.00 Alterada 1.24-2.0	24 Limo arcilloso café oscuro de plasticidad alta, humedad media y encia blanda.
200	00 Limo arcilloso café claro de plasticidad alta y humedad alta.
2,00	N DEL APIQUE

DETALLE DE ENSAYOS DE LABORATORIO

MOVILIDAD

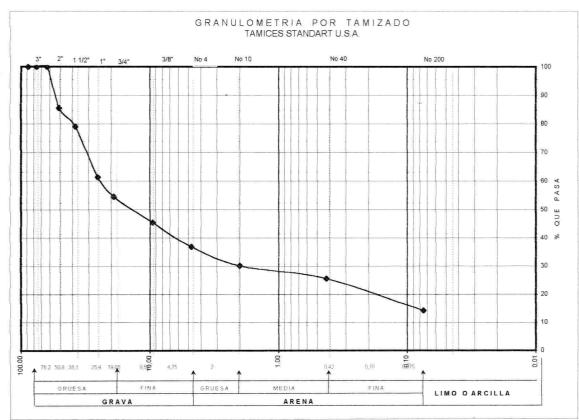
Instituto de Desarrollo Urbano

FL-8

A.C.I. PROYECTOS S.A.

ANALISIS GRANULOMETRICO C-259-4-04-01-02

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 05-May-04


 UBICACIÓN PROF.:
 Calle 43A Sur No. 1 MARGEN 0,14/0,27 m GRADACION
 IZQUIERDO
 DESCRIPCION:
 RECEBO

 HUMEDAD NATURAL

 P1=
 3.036,4
 P2=
 2.604,0
 P1
 3406

	GRADAC	TON	
P1=	3.036,4	P2=	2.604,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	434,0	14,3	85,7
1 1/2"	200,0	6,6	79,1
1"	536,0	17,7	61,5
3/4"	208,0	6,9	54,6
3/8"	280,0	9,2	45,4
4	262,0	8,6	36,8
10	202,0	6,7	30,1
40	140,0	4,6	25,5
200	342,0	11,3	14,2
FONDO	432,4	14,2	

P1	3406	
P2	3154	
P3	117,6	
%HUM	8,3	
Limite Liquido	_	20,70%
Límite Plástico	_	14,49%
Índice Plasticidad	-	6,2%
Especificación: sección 13 (IDU)	Gradacion tipo	A
Grava (%)	_	63,2
Arena (%)		22,5
Finos (%)	-	14,2
		40
Clasificacion U. S. C.	_	6H-60

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-01-02

OBRA: UBICACIÓN DESCRIPCION:

	IDU-259-03
Calle 43A Sur No. 14 - 14	MARGEN
RECEBO	

SECTOR:

SAN CRISTOBAL

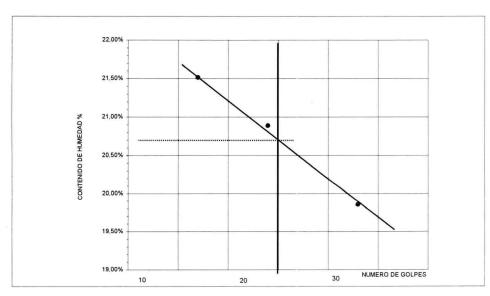
FECHA:

05-May-04

LIMITE LIQUIDO

No. De Golpes	33	24	17
Recipiente No	43	21	62
P1 gr.	41,49	41,52	41,63
P2 gr.	35,79	35,50	35,34
P3 gr.	7,08	6,68	6,1
% Humedad	19,9%	20,9%	21,5%

 Límite Liquido
 %
 20,70%


 Límite Plástico
 %
 14,49%

 Indice de Plasticidad
 %
 6,2%

LIMITE PLASTICO

Recipiente No	119	121	
	11,57	11,97	
P1 gr. P2 gr.	10,64	10,97	
P3 gr.	4,2	4,09	
% Humedad	14,44%	14,53%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

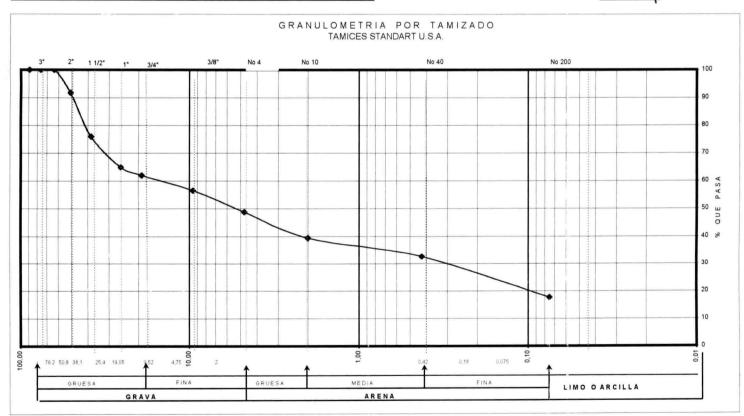
Firma:

Firma:

FL-8

A.C.I. PROYECTOS S.A.

ANALISIS GRANULOMETRICO C-259-4-04-01-03



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 05-May-04

 UBICACIÓN PROF.:
 Calle 43A Sur No. 14 - 1 0,27/0,48 m
 MARGEN PROF.
 IZQUIERDO
 DESCRIPCION:
 RECEBO

GRADACION

	OKADAO	, • ,,	
P1=	3.134,0	P2=	2.580,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	258,0	8,2	91,8
1 1/2*	496,0	15,8	75,9
1.	346,0	11,0	64,9
3/4"	92,0	2,9	62,0
3/8*	172,0	5,5	56,5
4	244,0	7,8	48,7
10	290,0	9,3	39,4
40	214,0	6,8	32,6
200	468,0	14,9	17,7
FONDO	554,0	17,7	

	P1	3500	
	P2	3252	
	P3	118,0	
	%HUM	7,9	
Límite Líquido		_	22,15%
Límite Plástico		_	13,49%
Índice Plasticidad		_	8,7%
Especificación: sección 13 (IDU)	Grad	acion tipo A	
C (0/)			51,3
Grava (%)			
Grava (%) Arena (%)		_	31,0
		_	31,0 17,7

OBSERVACIONES:

FIRMA:

IZQUIERDO

FL-9

LIMITES Y CLASIFICACION

C-259-4-04-01-03

OBRA: **UBICACIÓN** DESCRIPCION:

	IDU-259-03	
le 43A Sur No. 14 - 14	MARGEN	

SECTOR: SAN CRISTOBAL

05-May-04

RECEBO

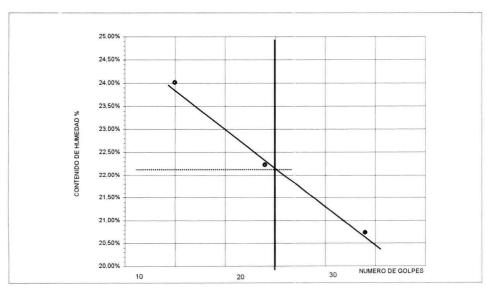
Calle 43A Sur No. 14 - 14

LIMITE LIQUIDO

ENVITE ENGOIDE				
No. De Golpes	34	24	15	
Recipiente No	131	90	137	
P1 gr.	38,29	41,00	37,94	
P2 gr.	32,4	34,61	31,43	
P3 gr.	3,99	5,87	4,32	
% Humedad	20,7%	22,2%	24,0%	

Límite Liquido % 22,15% Límite Plástico % 13,49%

Indice de Plasticidad %


FECHA:

8,7%

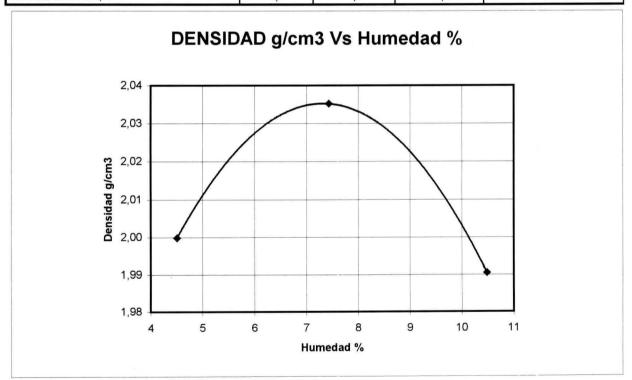
LIMITE PLASTICO

	ENVITET DIOTIO	<u> </u>	
Recipiente No	51	98	
P1 gr.	14,14	14,08	
P2 gr.	13,26	13,04	
P3 gr.	6,84	5,20	
% Humedad	13,71%	13,27%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:


Firma:

FL⁻-13 ENSAYO DE PROCTOR MODIFICADO

C-259-4-04-01-03

PROYECTO MATERIAL:	IDU-259-2003	SECTOR:	SAN CRISTOBA	AL .	
PROFUNDIDAD:	0,27/0,48 m	CARRIL:			
ABSCISA:		_	CANTERA:		
			FECHA:	12-May-04	
Caida: 18 pulg.	Golpes por Capa: 56		No Capa 5	Martillo	10 Lb
Ensayo de Proctor		1	2	3	
Peso de la muestra	a húmeda y molde, g	7.510	7.716	7.743	
Peso del molde, g		3.050	3.050	3.050	
Peso de la muestra	a húmeda, g	4.460	4.666	4.693	
Humedad de molde	90,%	4,5	7,4	10,5	
Peso de la muestra	a seca, g	4.268	4.343	4.248	
Volumén del molde	e, pies3	2134	2134	2134	
Densidad de la mu	estra seca,gr/cm3	2,000	2,035	1,990	
	•		1		
Peso muestra húm	eda + recipiente ,g	318,5	247,0	326,7	
Peso muestra sec	a + recipiente,g	306,3	232,1	300,1	
Peso recipiente, g		35,7	31,7	46,4	
Humedad de molde	eo,%	4,5	7,4	10,5	

HUM. OPTIMA:

7,5%

DENS. MAX.

2,036

Gr/ cc

genterfologo

Ing. Residente.

C	A.C.I. PROYECTOS		A.C.I.PRO	OYECTOS S.A.		
FL - 3		EN	ISAYO DE DENSIDAD EN EL TE	ERRENO		C-259-04-04-01-03
PROYEC1	ГО:	IDU-259-2003	CALZADA:	FECHA:		
SECTOR:			CAPA No	PROF. TOMA:	0,27/0,48 m	
DESCRIP	CION:		CANTERA:	CARRIL:		
	Items	ABSCISA				
		Lado		.		
		Tipo de material				
1	Terreno	Peso frasco y arena inicial (g.)	7.423			
2	Terreno	Peso frasco y arena restante (g.)	3.742			
3	Laboratorio	Constante del cono (g.)	1.646			

2.035

1,40

1.454

2.991

7,9

2.772

1,907

2,036

7,5

93,7

Contro de Documentación **OBSERVACIONES:**

(1)-(2)-(3)

(4) / (5)

Terreno

Terreno

(9) / (6)

(7)/(1+(8))

Laboratorio

Laboratorio

(10) / (11)

Laboratorio

4 5

6

7

8

9

10

11

12

13

Peso de la arena en el hueco (g.)

Densidad de la arena (g. / cm3)

Peso material extraido húmedo (g.)

Peso material extraido seco (g.)

Densidad máx. seca (gr/cm3)

Compactación Terreno (%)

Compactación especificada (%)

Densidad seca del material (g / cm3)

Humedad óptima de laboratorio (%)

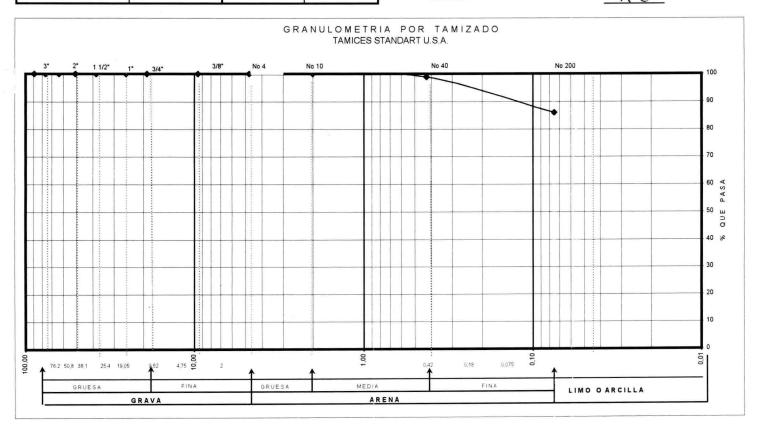
Volumen del hueco (cm3)

Humedad (%)

Firma:

Ingeniero Residente

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-01-04


 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 05-May-04

 UBICACIÓN
 Calle 43A Sur No. 14 - 1
 MARGEN
 IZQUIERDO
 DESCRIPCION:
 SUELO NATURAL

PROF. : 0,48/2,00 m

GRADACION				
P1=	244,7	P2=	34,1	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2"	0,0	0,0	100,0	
3"	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2"	0,0	0,0	100,0	
1 1/2"	0,0	0,0	100,0	
1*	0,0	0,0	100,0	
3/4"	0,0	0,0	100,0	
3/8"	0,0	0,0	100,0	
4	0,0	0,0	100,0	
10	0,0	0,0	100,0	
40	2,8	1,1	98,9	
200	31,3	12,8	86,1	
FONDO	210,6	86,1		

	HUMED	HUMEDAD NATURAL		
	P1	346		
	P2	278		
	P3	33,3		
	%HUM	27,8		
Límite Líquido			38,90%	
Límite Plástico			20,05%	
Índice Plasticidad		_	18,8%	
Especificación: sección 13 (IDU)		acion tipo A		
Grava (%)		_	0,0	
Arena (%)			13,9	
Finos (%)			86,1	
Clasificacion U. S.	C.		CL	
Clasificacion AASH	TO		A-6	

OBSERVACIONES:

FIRMA:

FI . Q

LIMITES Y CLASIFICACION

C-259-4-04-01-04

OBRA: UBICACIÓN

	IDU-259-03		
alle 43A Sur No 14 -	14	MARGEN	-

SECTOR:

SAN CRISTOBAL

IZQUIERDO

FECHA:

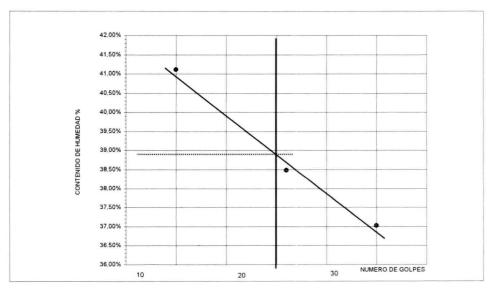
05-May-04

DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO

No. De Golpes	35	26	15
Recipiente No	151	19	88
P1 gr.	35,17	38,92	33,67
P2 gr.	26,87	30,18	25,55
P3 gr.	4,45	7,47	5,8
% Humedad	37,0%	38,5%	41,1%

 Límite Liquido
 %
 38,90%


 Límite Plástico
 %
 20,05%

 Indice de Plasticidad
 %
 18,8%

LIMITE PLASTICO

	ENVITETEACTION					
Recipiente No	61	99				
P1 gr.	14,09	13,26				
P2 gr.	12,8	11,93				
P3 gr.	6,46	5,20				
% Humedad	20,35%	19,76%				

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

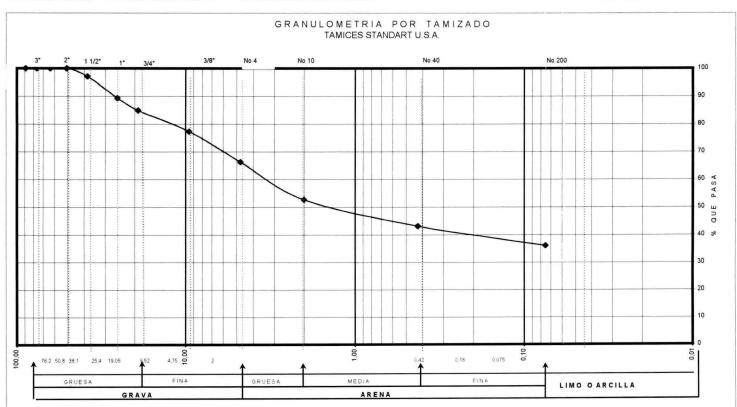
OBRA:

UBICACIÓN

A.C.I. PROYECTOS S.A.

FL-8 ' ANALISIS GRANULOMETRICO C-259-4-04-02-01

 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 05-May-04


 Calle 43A Sur No. 11A - MARGEN
 DERECHO
 DESCRIPCION:
 RECEBO

PROF. : 0,14/0,27 m

-	-	-	-	10	

P1=	2.161,1	P2=	1.380,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	64,0	3,0	97,0
1*	168,0	7,8	89,3
3/4"	94,0	4,3	84,9
3/8"	164,0	7,6	77,3
4	238,0	11,0	66,3
10	294,0	13,6	52,7
40	206,0	9,5	43,2
200	152,0	7,0	36,1
FONDO	781,1	36,1	

	HUME	DAD NATURA	L
	P1	2680	
	P2	2346	
	P3	184,9	
	%HUM	15,5	
Límite Líquido		_	20,70%
Límite Plástico			14,49%
Índice Plasticidad		<u>-</u>	6,2%
Especificación: sección 13 (IDU)	Grad	dacion tipo A	
Grava (%)		. <u></u>	33,7
Arena (%)		_	30,2
Finos (%)			36,1
Clasificacion U. S. C.		_	6M-6C
Clasificacion AASHTC	U		A-4

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-02-01

OBRA: UBICACIÓN DESCRIPCION: IDU-259-03

SAN CRISTOBAL

Calle 43A Sur No. 11A - 17 Este MARGEN
RECEBO

SECTOR:

FECHA:

05-May-04

LIMITE LIQUIDO

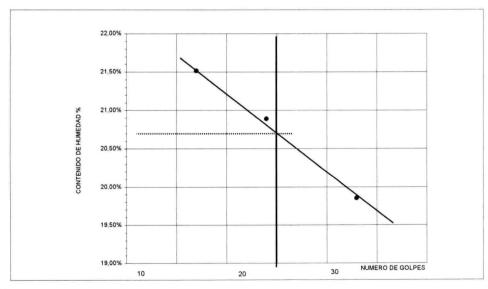
	40.00	
33	24	17
43	21	62
41,49	41,52	41,63
35,79	35,50	35,34
7,08	6,68	6,1
19,9%	20,9%	21,5%
	43 41,49 35,79 7,08	43 21 41,49 41,52 35,79 35,50 7,08 6,68

Límite Liquido %

20,70%

Límite Plástico %

14,49%


Indice de Plasticidad %

6,2%

LIMITE PLASTICO

	ENVITETEACTION				
Recipiente No	119	121			
	11,57	11,97			
P1 gr. P2 gr.	10,64	10,97			
P3 gr.	4,2	4,09			
% Humedad	14,44%	14,53%			

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

A.C.I. PROYECTOS	A.C.I.PROYECTOS S.A.	
FL - 3	ENSAYO DE DENSIDAD EN EL TERRENO	C-259-04-04-02-01

FECHA:

CALZADA:

SECTOR	₹:		CAPA No	PROF. TOMA:	0,14-0,27 m		
DESCRIPCION:			CANTERA:	CARRIL:			
	Items	ABSCISA				·	
		Lado	·				
		Tipo de material					
1	Terreno	Peso frasco y arena inicial (g.)	7.312				
2	Terreno	Peso frasco y arena restante (g.)	3.652				
3	Laboratorio	Constante del cono (g.)	1.765				
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	1.895				
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40				
6	(4) / (5)	Volumen del hueco (cm3)	1.354				
7	Terreno	Peso material extraido húmedo (g.)	2.765				
8	Terreno	Humedad (%)	9,8				
9	(7) /(1 + (8))	Peso material extraido seco (g.)	2.518				
10	(9) / (6)	Densidad seca del material (g / cm3)	1,860				
11	Laboratorio	Densidad máx. seca (gr/cm3)	2,009				
12	Laboratorio	Humedad óptima de laboratorio (%)	8,3				
13	(10) / (11)	Compactación Terreno (%)	92,6				
		Compactación especificada (%)					

Firma

OBSERVACIONES:

IDU-259-2003

PROYECTO:

96/

Firma:

Ingeniero Residente

FL -8 * ANALISIS GRANULOMETRICO C-259-4-04-02-02

OBRA: IDU-259-03

0,27/0,48 m

SECTOR: SAN CRISTOBAL

UBICACIÓN PROF.:

Calle 43A Sur No. 11A - MARGEN

DERECHO

DESCRIPCION:

FECHA

05-May-04 **RECEBO**

GRADACION				
P1=	4.091,0	P2=	2.574,0	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2*	0,0	0,0	100,0	
3*	0,0	0,0	100,0	
2" 1/2"	842,0	20,6	79,4	
2"	252,0	6,2	73,3	
1 1/2*	254,0	6,2	67,0	
1*	308,0	7,5	59,5	
3/4"	192,0	4,7	54,8	
3/8"	308,0	7,5	47,3	
4	256,0	6,3	41,0	
10	306,0	7,5	33,6	
40	222,0	5,4	28,1	
200	476,0	11,6	16,5	
FONDO	675,0	16,5		

HUMEDAD NATURAL 4710 4388 P2

297,0

%HUM 7,9

23,15% Límite Líquido Límite Plástico 14,26% Índice Plasticidad 8,9%

P3

Especificación: Gradacion tipo A

sección 13 (IDU)

Grava (%) Arena (%) Finos

59,0 24,5 16,5

6C Clasificacion U.S.C. A-2-4 Clasificacion AASHTO

GRANULOMETRIA POR TAMIZADO TAMICES STANDART U.S.A. No 200 No 10 No 40 3/8" No 4 70 QUE 30 20 10 00'1 0,10 0,01 4,75 100,00 76 2 50,8 38,1 25,4 19,05 FINA GRUESA FINA LIMO O ARCILLA

OBSERVACIONES:

FIRMA:

PL - 9

LIMITES Y CLASIFICACION

C-259-4-04-02-02

OBRA: UBICACIÓN DESCRIPCION:

-03
MARGEN

SECTOR:

SAN CRISTOBAL

FECHA: 05-May-04

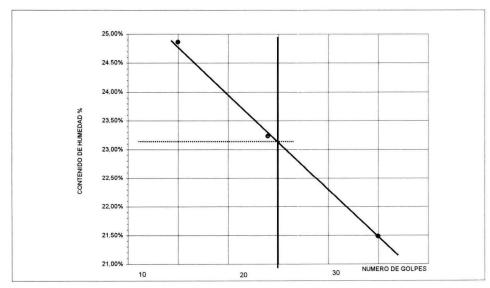
LIMITE LIQUIDO					
No. De Golpes	35	24	15		
Recipiente No	45	42	36		
P1 gr.	43,41	46,95	48,94		
P2 gr.	36,80	39,55	40,61		
P3 gr.	6,03	7,70	7,10		
% Humedad	21,5%	23,2%	24,9%		

Límite Liquido %

23,15%

Límite Plástico %

14,26%


Indice de Plasticidad %

8,9%

LIMITE PLASTICO

Recipiente No	34	145	
P1 gr.	14,09	14,28	
P2 gr.	13,20	13,03	
P3 gr.	6,89	4,36	
% Humedad	14,10%	14,42%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

Ci	A.C.I. PROYECTOS
----	---------------------

FI	_ 3

ENSAYO DE DENSIDAD EN EL TERRENO

C-259-04-04-02-02

ROYEC	' O:	IDU-259-2003	CALZADA:	 FECHA:		<u>. </u>
ECTOR:			CAPA No .	 PROF. TOMA:	0,23-0,55 m	_
ESCRIP	CION:		CANTERA:	 CARRIL:		_
	Items	ABSCISA			T	
		Lado				
		Tipo de material				
1	Terreno	Peso frasco y arena inicial (g.)	7.298			
2	Terreno	Peso frasco y arena restante (g.)	3.420			
3	Laboratorio	Constante del cono (g.)	1.765	 		
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	2.113			
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40			
6	(4) / (5)	Volumen del hueco (cm3)	1.509			
7	Terreno	Peso material extraido húmedo (g.)	3.097			
8	Terreno	Humedad (%)	9,6			
9	(7) /(1 + (8))	Peso material extraido seco (g.)	2.826			
10	(9) / (6)	Densidad seca del material (g / cm3)	1,872			
11	Laboratorio	Densidad máx. seca (gr/cm3)	2,052			
12	Laboratorio	Humedad óptima de laboratorio (%)	8,2			
13	(10) / (11)	Compactación Terreno (%)	91,2			
		Compactación especificada (%)				

Firma

Firma:

Ingeniero Residente

FL - 13

A.C.I. PROYECTOS S.A.

ENSAYO DE PROCTOR MODIFICADO

C-259-4-04-02-02

PROYECTO	
MATERIAL:	

ABSCISA:

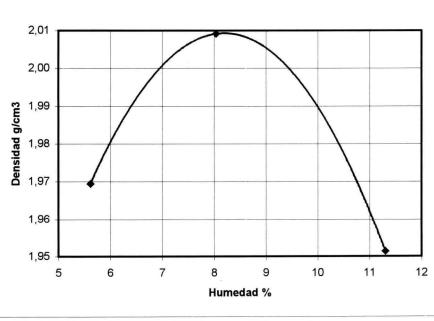
IDU-259-2003

SECTOR:

SAN CRISTOBAL

PROFUNDIDAD:

0,27/0,48 m CARRIL:


CANTERA:

			FECHA:		12-May-04	
Caida: 18 pulg.	Golpes por Capa: 56		No Capa	5	Martill	o 10 Lb
Ensayo de Proctor	ê	1	2		3	
						_

called to paris.		110 Oupu	Widi tillo To Eb	
Ensayo de Proctor	1	2	3	
Peso de la muestra húmeda y molde, g	7.489	7.682	7.685	
Peso del molde, g	3.050	3.050	3.050	
Peso de la muestra húmeda, g	4.439	4.632	4.635	
Humedad de moldeo,%	5,6	8,0	11,3	
Peso de la muestra seca, g	4.203	4.288	4.164	
Volumén del molde, pies3	2134	2134	2134	
Densidad de la muestra seca,gr/cm3	1,969	2,009	1,951	

Peso muestra húmeda + recipiente ,g	300,7	249,9	224,2	
Peso muestra seca + recipiente,g	286,5	234,2	204,1	
Peso recipiente, g	33,8	38,8	26,3	
Humedad de moldeo,%	5,6	8,0	11,3	

DENSIDAD g/cm3 Vs Humedad %

HUM. OPTIMA:

8,3%

DENS. MAX.

2,009

Gr/ cc

George Ge

Ing. Residente.

FL -8 ANALISIS GRANULOMETRICO C-259-4-04-02-03

SECTOR: **FECHA** IDU-259-03 05-May-04 SAN CRISTOBAL **UBICACIÓN** Calle 43A Sur No. 11A - MARGEN **DERECHO** DESCRIPCION: SUELO NATURAL

PROF.: 0,48/2,00 m

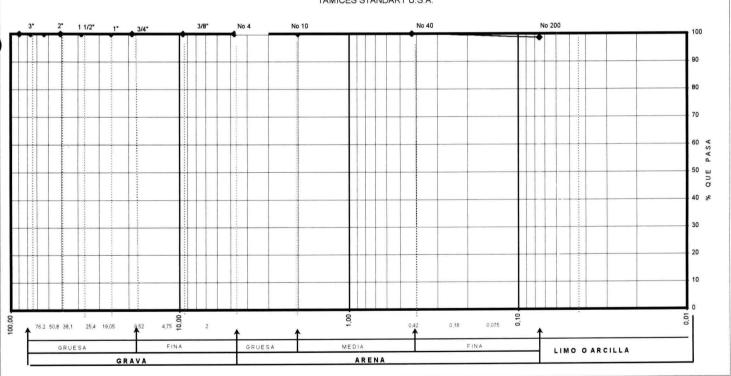
_		A			^	-	M
	ĸ	A	I)	А		u	N

P1=	236,3	P2=	3,2
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1*	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	3,2	1,4	98,6
FONDO	233,1	98,6	

HUMEDAD NATURAL

P1 365,6 268,9 P2 P3 32,6 40,9 %HUM

Límite Líquido 61,40% Límite Plástico 29,32% Índice Plasticidad 32,1%


Especificación: Gradacion tipo A

sección 13 (IDU)

Grava (%) Arena (%) (%) Finos Clasificacion U. S. C. Clasificacion AASHTO

0,0 1,4 98.6

GRANULOMETRIA POR TAMIZADO TAMICES STANDART U.S.A.

OBSERVACIONES:

FIRMA:

LIMITES Y CLASIFICACION

C-259-4-04-02-03

OBRA: UBICACIÓN DESCRIPCION:

259-03
MARGEN
_

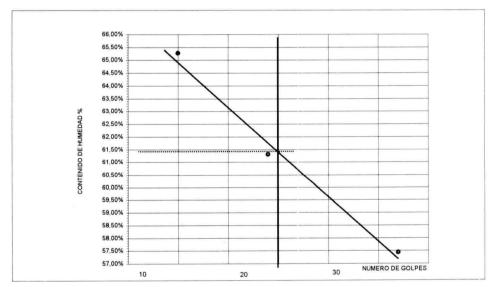
SECTOR: DERECHO

SAN CRISTOBAL

FECHA:

05-May-04

LIMITE LIQUIDO


37	24	15			
121	22	119			
37,07	36,51	33,47			
25,04	25,47	21,91			
4,09	7,46	4,20			
57,4%	61,3%	65,3%			
	121 37,07 25,04 4,09	121 22 37,07 36,51 25,04 25,47 4,09 7,46			

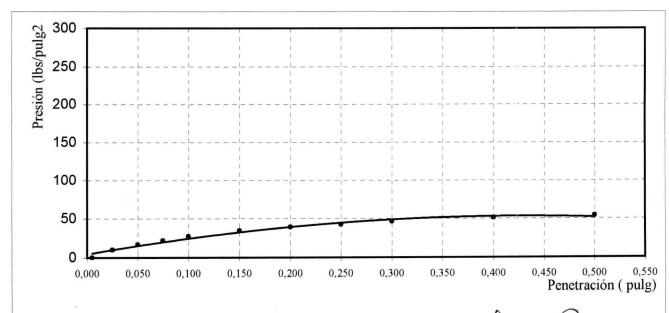
Límite Liquido % 61,40% Límite Plástico % 29,32% Indice de Plasticidad % 32,1%

LIMITE PLASTICO

Recipiente No	80	89	
P1 gr.	11,96	11,53	
P2 gr.	10,43	10,15	
P3 gr.	5,17	5,48	
% Humedad	29,09%	29,55%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

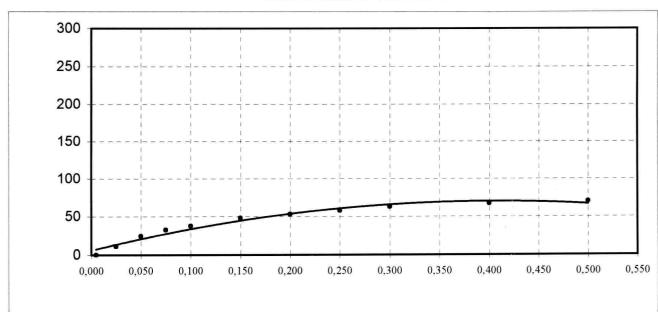
OBSERVACION


Firma:

Firma:

FL - 20		ENSA	YO DE CBR	INALTERADO	C-259-	4-04-02-03
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECHA:	11-May-04
MARGEN:	DERECHO		PROF. m.	0,48/2,00 m	CBR:	1
UBICACIÓN			BARRENO	2	MUESTRA	3
Molde No.		19 SATUR	ADO		PESO UN	IITARIO
Lectura de expansión inicial		0			P-muestra gr	Section is well be proposed.
Lectura de expansión 1er día		2			V- muestra c.c	9
Lectura de expansión 2er día		8			% HUM.	
Lectura de expansión 3er día		15			DEN,SEC gr/cc	
Lectura de expansión 4er día		26				
Expansión total %		0,52				
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.			
0,005	0	0,00	0,00			
0,025	14,00	30,86	10,29			
0,050	23,00	50,71	16,90			
0,075	30,00	66,14	22,05			
0,100	37,00	81,57	27,19			
0,150	47,00	103,62	34,54			
0,200	53,00	116,84	38,95			
0,250	58,00	127,87	42,62			
0,300	63,00	138,89	46,30			
0,400	69,00	152,12	50,71			
0,500	73,00	160,94	53,65			
Humedad de penetr. %						
CBR Correg. a 01	2,72					
CBR Correg. a 02	2,60					

CURVAS DE PRESION Y PENETRACION


GEOTECNOLOGO

INGENIERO

FL - 20		ENSA	YO DE CBR	INALTERADO		(C-259-4	-04-02-03
PROYECTO:	IDU-259-2003	> = W	SECTOR	SAN CRISTOBAL		FECHA:		1 <u>1-May-04</u>
MARGEN:	DERECHO		PROF. m.	0,48/2,00 m		CBR:		1
UBICACIÓN			BARRENO	2		MUESTI	RA	3
Molde No.		19 SIN SAT	URAR			PI	ESO UN	ITARIO
Lectura de expansión inicial		0				P-muest	ra gr	206,8
Lectura de expansión 1er día		0				V- mues		109,8
Lectura de expansión 2er día		0				% HUM.		40,9
Lectura de expansión 3er día		0				DEN,SE	C gr/cc	1,337
Lectura de expansión 4er día		0						
Expansión total %		0,0						
PENETRACION PULG:	CARGA KG	CARGA LB	CARGA P.S.I.					
0,005	0	0,00	0,00					
0,025	15,00	33,07	11,02					
0,050	33,00	72,75	24,25		Δ.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0,075	44,00	97,00	32,33					
0,100	51,00	112,44	37,48					
0,150	65,00	143,30	47,77					
0,200	72,00	158,73	52,91			92		
0,250	78,00	171,96	57,32					
0,300	85,00	187,39	62,46					
0,400	91,00	200,62	66,87					
0,500	95,00	209,44	69,81					
Humedad de penetr. %	40,9%							
CBR Correg. a 01	3,75							
CBR Correg. a 02	3,53							

CURVAS DE PRESION Y PENETRACION

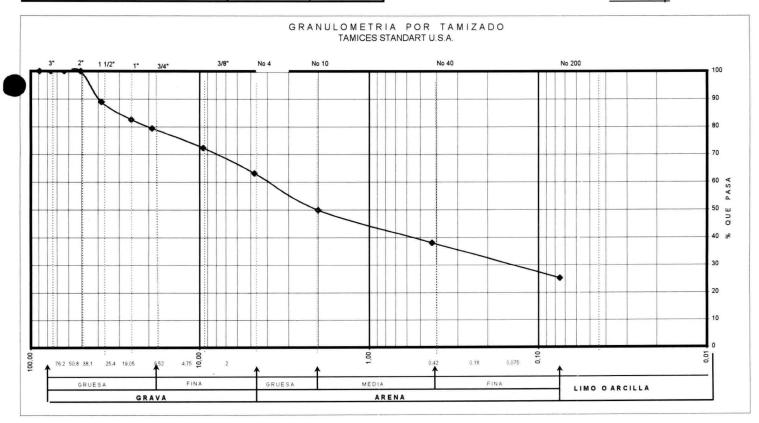
GEOTECNOLOGO

INGENIERO

PROF.:

A.C.I. PROYECTOS S.A.

ANALISIS GRANULOMETRICO C-259-4-04-03-01


 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 06-May-04

 UBICACIÓN
 Calle 43A Sur No. 11A - MARGEN
 IZQUIERDO
 DESCRIPCION:
 RECEBO

0,14/0,42 m G R A D A C I O N

P1=	4.996,5	P2=	3.736,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	550,0	11,0	89,0
1*	322,0	6,4	82,5
3/4"	158,0	3,2	79,4
3/8"	354,0	7,1	72,3
4	458,0	9,2	63,1
10	664,0	13,3	49,8
40	582,0	11,6	38,2
. 200	648,0	13,0	25,2 .
FONDO	1.260,5	25,2	

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
н	JMEDAD NATUR	AL
P1	5798	
P2	5288	
P3	291,5	
%HUM	10,2	
Limite Liquido		22,75%
Límite Plástico		14,64%
Índice Plasticidad		8,1%
Especificación: sección 13 (IDU)	Gradacion tipo A	
Grava (%)	_	36,9
Arena (%)		37,9
Finos (%)		25,2
Clasificacion U. S. C.		SC
Clasificacion AASHTO		A-2-4

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-03-01

OBRA: UBICACIÓN DESCRIPCION:

ID	J-259-03
Calle 43A Sur No. 11A - 86 Este	MARGEN
RECEBO	 -

SECTOR:

SAN CRISTOBAL

FECHA:

06-May-04

._...

LIMITE LIQUIDO

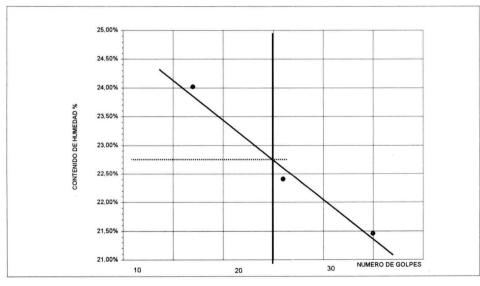
	LIMITE	QUIDO	
No. De Golpes	35	26	17
Recipiente No	31	32	28
P1 gr.	41,07	47,36	45,61
P2 gr.	35,23	40,02	38,30
P3 gr.	8,01	7,26	7,86
% Humedad	21,5%	22,4%	24,0%

Límite Liquido %

22,75%

Límite Plástico %

14,64%


Indice de Plasticidad %

8,1%

LIMITE PLASTICO

Recipiente No	130	57	
P1 gr.	18,68	21,29	1
P1 gr. P2 gr. P3 gr.	16,83	19,53	ĺ
P3 gr.	4,35	7,36	1
% Humedad	14,82%	14,46%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

200

Firma:

Lucia

PROYECTO

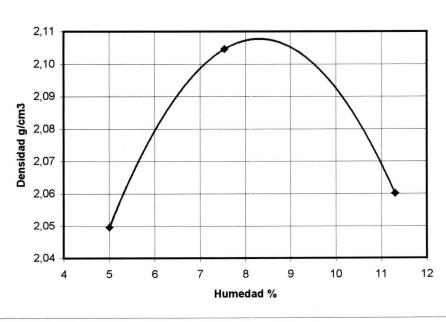
A.C.I. PROYECTOS S.A.

FL - 13 ENSAYO DE PROCTOR MODIFICADO

IDU-259-2003 SECTOR: SAN CRISTOBAL

MATERIAL:

PROFUNDIDAD: 0,14/0,42 m CARRIL:


ABSCISA: CΔΝΤΕΡΔ·

ABSCISA:			CANTE	RA:		
			FECHA:		12-May-04	
Caida: 18 pulg.	Golpes por Capa: 56		No Capa	5	Martillo	10 Lb
Ensayo de Proctor		1	2		3	
Peso de la muestr	a húmeda y molde, g	7.643	7.88	10	7.943	

Ensayo de Proctor	1	2	3	·
Peso de la muestra húmeda y molde, g	7.643	7.880	7.943	
Peso del molde, g	3.050	3.050	3.050	
Peso de la muestra húmeda, g	4.593	4.830	4.893	
Humedad de moldeo,%	5,0	7,5	11,3	
Peso de la muestra seca, g	4.374	4.491	4.396	
Volumén del molde, pies3	2134	2134	2134	
Densidad de la muestra seca,gr/cm3	2,050	2,105	2,060	

Peso muestra húmeda + recipiente ,g	312,5	248,8	253,9	
Peso muestra seca + recipiente,g	299,3	234,0	231,5	14/5
Peso recipiente, g	35,8	37,8	33,3	
Humedad de moldeo,%	5,0	7,5	11,3	

DENSIDAD g/cm3 Vs Humedad %

HUM. OPTIMA:

8,2%

DENS. MAX.

2,108

Gr/ cc

George

Ing. Residente.

C-259-4-04-03-01

A.C.I. PROYECTO	5
--------------------	---

FI	_	3

ENSAYO DE DENSIDAD EN EL TERRENO

C-259-04-04-03-01

PROYECTO: SECTOR:		IDU-259-2003	CALZADA:	FECHA:		_
			CAPA No	PROF. TOMA:	0,14-0,42 m	_
ESCRIP	CION:		CANTERA:	CARRIL:		_
	Items	ABSCISA				
	Kome	Lado				
		Tipo de material				
1	Terreno	Peso frasco y arena inicial (g.)	7.212			
2	Terreno	Peso frasco y arena restante (g.)	3.289			
3	Laboratorio	Constante del cono (g.)	1.765			
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	. 2.158			
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40	·		
6	(4) / (5)	Volumen del hueco (cm3)	1.541			
7	Terreno	Peso material extraido húmedo (g.)	3.254			
8	Terreno	Humedad (%)	10,2			
9	(7) /(1 + (8))	Peso material extraido seco (g.)	2.953			
10	(9) / (6)	Densidad seca del material (g / cm3)	1,916			
11	Laboratorio	Densidad máx. seca (gr/cm3)	1,984			
12	Laboratorio	Humedad óptima de laboratorio (%)	8,8			
13	(10) / (11)	Compactación Terreno (%)	96,6			
		Compactación especificada (%)				
BSERV	ACIONES:	Se libera capa.				

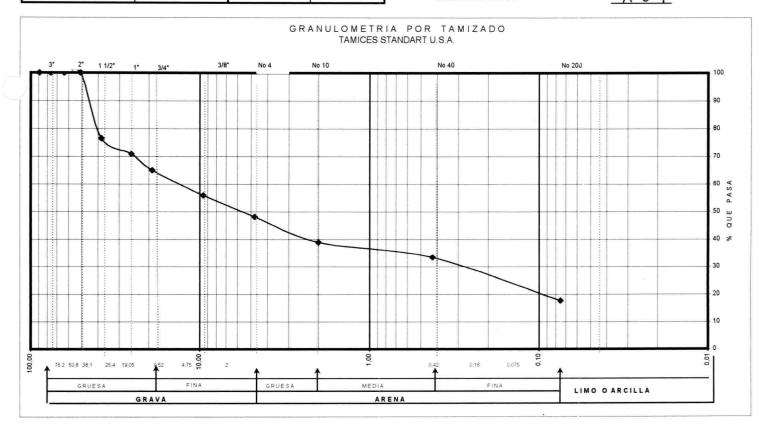
Firma

Geotecnólogo

Firma:

Ingeniero Residente

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-03-02


 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 06-May-04

 UBICACIÓN
 Calle 43A Sur No. 11A - MARGEN
 IZQUIERDO
 DESCRIPCION:
 RECEBO

PROF. : 0,42/0,81 m

	0,420,01111		
	GRADAC	TON	
P1=	6.057,9	P2=	4.990,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	1.422,0	23,5	76,5
1."	340,0	5,6	70,9
3/4"	356,0	5,9	65,0
3/8"	552,0	9,1	55,9
4	470,0	7,8	48,2
10	560,0	9,2	38,9
40	336,0	5,5	33,4
200	954,0	15,7	17,6
FONDO	1.067,9	17,6	

1	HUMEDAD NAT	TURAL
F	21 68	342
F	2 63	358
F	30	0,1
%HU	M	8,0
Límite Líquido		22,60%
Límite Plástico	(%)	13,97%
Índice Plasticidad		8,6%
Especificación: sección 13 (IDU)	Gradacion tipo	A
Grava (%)		51,8
Arena (%)		30,5
Finos (%)		17,6
Clasificacion U. S. C.		GC
Clasificacion AASHTO		A-2-4

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-03-02

OBRA: UBICACIÓN

IDU-259-03
Calle 43A Sur No. 11A - 86 Este MARGEN

SECTOR:

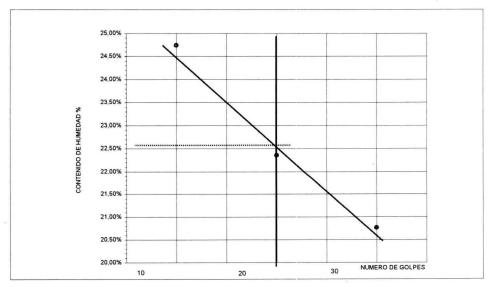
SAN CRISTOBAL

FECHA:

06-May-04

DESCRIPCION: RECEBO

LIMITE LIQUIDO


Elivit E Eligobo							
No. De Golpes	35	25	15				
Recipiente No	22	73	55				
P1 gr.	47,13	43,35	45,62				
P2 gr.	40,31	36,54	37,93				
P3 gr.	7,46	6,08	6,85				
% Humedad	20,8%	22,4%	24,7%				

Límite Liquido %	22,60%
Límite Plástico %	13,97%
Indice de Plasticidad %	8,6%

LIMITE PLASTICO

Recipiente No	54	154	
P1 gr.	11,73	10,05	
P1 gr. P2 gr.	11,02	9,37	
P3 gr.	6,09	4,35	
% Humedad	14,40%	13,55%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

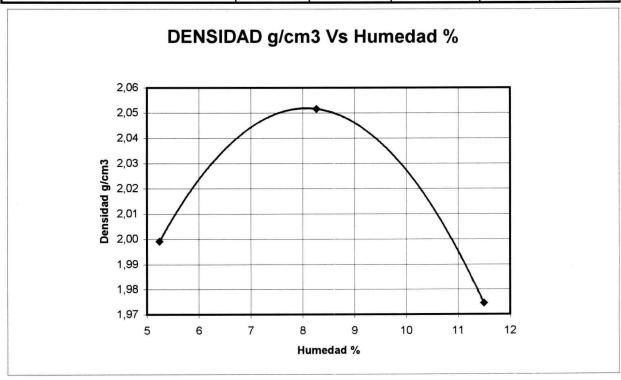
Firma:

Ingenierq

Humedad de moldeo,%

A.C.I. PROYECTOS S.A.

FL - 13 ENSAYO DE PROCTOR MODIFICADO


C-259-4-04-03-02

PROYECTO MATERIAL:	IDU-259-2003	SECTOR:	SAN CRISTOBA	L	
PROFUNDIDAD:	0,42/0,81 m	CARRIL:			
ABSCISA:			CANTERA:		
			FECHA:	12-May-04	
Caida: 18 pulg.	Golpes por Capa: 56		No Capa 5	Martillo	10 Lb
Ensayo de Procto		1	2	3	
Peso de la muestr	a húmeda y molde, g	7.540	7.790	7.748	
Peso del molde, g		3.050	3.050	3.050	
Peso de la muestr	a húmeda, g	4.490	4.740	4.698	
Humedad de mold	leo,%	5,2	8,3	11,5	
Peso de la muestr	a seca, g	4.266	4.378	4.214	
Volumén del mold	e, pies3	2134	2134	2134	
Densidad de la muestra seca,gr/cm3		1,999	2,052	1,975	
Peso muestra hún	neda + recipiente ,g	375,0	190,5	219,9	
Peso muestra sec	ca + recipiente,g	358,1	178,0	200,6	
Peso recipiente, g)	35,9	26,8	32,7	

8,3

11,5

5,2

HUM. OPTIMA:

8,2%

DENS. MAX.

2,052

Gr/ cc

Geotecnólogo

Ing. Residente.

A.C.I. PROYECTOS		A.C.I.PROYECTOS S.A.
	FL - 3	ENSAYO DE DENSIDAD EN EL TERRENO

PROYECT	ro:	IDU-259-2003	CALZADA:	FECHA:			
SECTOR:		CAPA No		 PROF. TOMA: 0,42-0,81		 1	
DESCRIP	CION:		CANTERA:	CARRIL:			
						_	
	Items	ABSCISA		 		_	
		Lado		 			
		Tipo de material					
1	Terreno	Peso frasco y arena inicial (g.)	7.264				
2	Terreno	Peso frasco y arena restante (g.)	3.421			\perp	
3	Laboratorio	Constante del cono (g.)	1.765				
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	2.078				
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40				
6	(4) / (5)	Volumen del hueco (cm3)	1.484				
7	Terreno	Peso material extraido húmedo (g.)	3.261				
8	Terreno	Humedad (%)	12,1				
9	(7) /(1 + (8))	Peso material extraido seco (g.)	2.909				
10	(9) / (6)	Densidad seca del material (g / cm3)	1,960				
11	Laboratorio	Densidad máx. seca (gr/cm3)	2,052				
12	Laboratorio	Humedad óptima de laboratorio (%)	8,2				
13	(10) / (11)	Compactación Terreno (%)	95,5				
		Compactación especificada (%)					

OBSERVACIONES:

Geotecnólogo

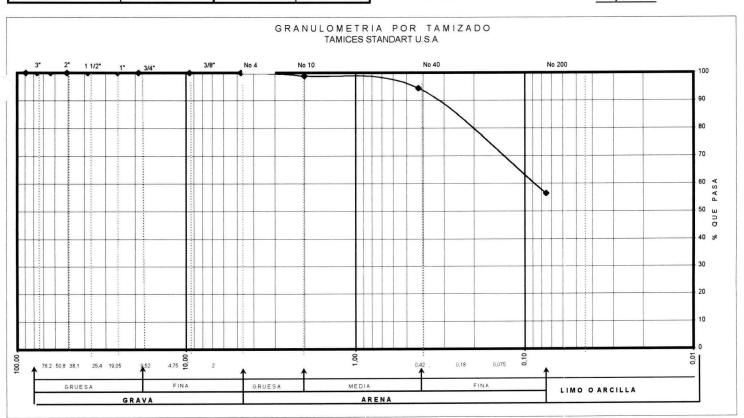
Firma: _

Ingeniero Residente

C-259-04-04-03-02

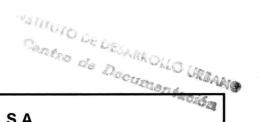
FL-8 ANALISIS GRANULOMETRICO C-259-4-04-03-03

 DBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 06-May-04


 JBICACIÓN
 Calle 43A Sur No. 11A - MARGEN
 IZQUIERDO
 DESCRIPCION:
 SUELO NATURAL

PROF. : 0,81/2,00 m

GRADACION	G	R	A	D	A	C	10	N
-----------	---	---	---	---	---	---	----	---


	GRADAC		
P1=	497,4	P2=	217,1
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2*	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	6,0	1,2	98,8
40	21,7	4,4	94,4
200	189,4	38,1	56,4
FONDO	280,3	56,4	

		COLLOTERITOR
	HUMEDAD NATUR	RAL
	P1 664	
	P2 562	
	P3 64,6	
%HL	JM 20,5	
Límite Líquido		21,75%
Límite Plástico		14,81%
Índice Plasticidad		6,9%
Especificación: sección 13 (IDU)	Gradacion tipo A	
Grava (%)		0,0
Arena (%)		43,6
Finos (%)		56,4
Clasificacion U. S. C.		ML-CL
Clasificacion AASHTO		A-4

OBSERVACIONES:

FIRMA:

OBRA:

FL . 9

LIMITES Y CLASIFICACION

C-259-4-04-03-03

UBICACIÓN DESCRIPCION:

IDU-	259-03
Calle 43A Sur No. 11A - 86 Este	MARGEN
SUELO NATURAL	

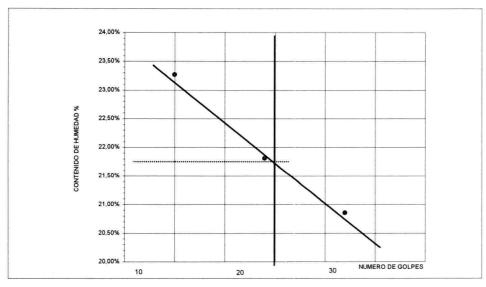
SECTOR: **IZQUIERDO**

SAN CRISTOBAL

FECHA:

06-May-04

LIMITE LIQUIDO


No. De Golpes	32	24	15
Recipiente No	91	85	29
P1 gr.	44,49	42,88	46,83
P2 gr.	37,76	36,24	39,48
P3 gr.	5,49	5,80	7,89
% Humedad	20,9%	21,8%	23,3%

Límite Liquido % 21,75% Límite Plástico % 14,81% Indice de Plasticidad % 6,9%

LIMITE PLASTICO

Recipiente No	41	135	
P1 gr.	19,62	16,44	
P2 gr.	17,92	14,85	
P3 gr.	6,10	4,41	
% Humedad	14,38%	15,23%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO

C-259-4-04-04-01

UBICACIÓN

OBRA:

PROF.:

IDU-259-03 Calle 43A Sur No. 1 MARGEN SECTOR:

SAN CRISTOBAL

FECHA

05-May-04

GRADACION

0,14/0,55 m

DERECHO

DESCRIPCION:

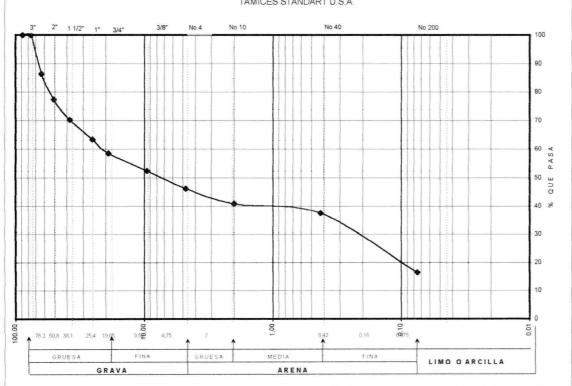
RECEBO

GRADACION					
P1=	4.123,7	P2=	2.886,0		
Tamiz	Peso retenido	% Retenido	% Pasa		
31/2"	0,0	0,0	100,0		
3*	0,0	0,0	100,0		
2" 1/2"	560,0	13,6	86,4		
2"	370,0	9,0	77,4		
1 1/2"	294,0	7,1	70,3		
1*	284,0	6,9	63,4		
3/4"	202,0	4,9	58,5		
3/8*	252,0	6,1	52,4		
4	258,0	6,3	46,2		
10	216,0	5,2	40,9		
40	144,0	3,5	37,4		
200	866,0	21,0	16,4		
FONDO	677,7	16,4			
		1			

HUMEDAD NATURAL

4308 P3 184.3 8,9 %HUM

Limite Liquido NL Límite Plástico NP 0.0% Índice Plasticidad


Especificación:

Gradacion tipo A

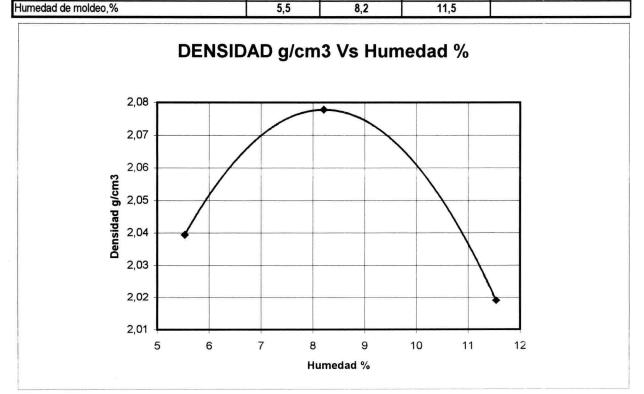
sección 13 (IDU)

53,8 (%) Grava 29,7 (%) Arena 16,4 Finos (%) 6M Clasificacion U. S. C. Clasificacion AASHTO

OBSERVACIONES

FIRMA:

ingeniero


FL - 13

A.C.I. PROYECTOS S.A.

ENSAYO DE PROCTOR MODIFICADO

C-259-4-04-04-01

PROYECTO	IDU-259-2003	SECTOR:	SAN CRISTOBA	L	
MATERIAL: PROFUNDIDAD:	0,14/0,55 m	CARRIL:			
ABSCISA:			CANTERA: FECHA:	13-May-04	
Caida: 18 pulg.	Golpes por Capa: 56		No Capa 5	Martillo	10 Lb
Ensayo de Proctor		1	2	3	
Peso de la muestra	a húmeda y molde, g	7.643	7.848	7.856	
Peso del molde, g		3.050	3.050	3.050	
Peso de la muestra	a húmeda, g	4.593	4.798	4.806	
Humedad de molde	eo,%	5,5	8,2	11,5	*
Peso de la muestra	a seca, g	4.352	4.434	4.309	
Volumén del molde	e, pies3	2134	2134	2134	
Densidad de la mu	estra seca,gr/cm3	2,039	2,078	2,019	
Peso muestra húm	ada + racinianta a	343.7	238.0	349.8	T
Peso muestra sec		327,5	223,0	317,3	
Peso recipiente, g		34,8	40,3	35,7	

HUM. OPTIMA:

8,4%

DENS. MAX.

2,077

Gr/ cc

Geotecnélogo

Ing. Residente.

197 (6)	A.C.I. PROYECTOS
---------	---------------------

	PROYECTOS	A.C.I.FROTECTOS S.A.					
FL - 3		ENS	SAYO DE DENSIDAD EN	N EL TERRENO			C-259-04-04-04-01
PROYECT SECTOR: DESCRIPC		IDU-259-2003	CALZADA: CAPA No CANTERA:		FECHA: PROF. TOMA: CARRIL:	0,14-0,51 m	-
	···········	7					-
	Items	ABSCISA	· · · · · · · · · · · · · · · · · · ·				
		Lado					
		Tipo de material					
1	Terreno	Peso frasco y arena inicial (g.)	7.423				
2	Terreno	Peso frasco y arena restante (g.)	3.396				
3	Laboratorio	Constante del cono (g.)	1.765				
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	2.262				
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40				
. 6	(4) / (5)	Volumen del hueco (cm3)	1.616				
7	Terreno	Peso material extraido húmedo (g.)	3.421				
8	Terreno	Humedad (%)	8,9				
9	(7) /(1 + (8))	Peso material extraido seco (g.)	3.141				
10	(9) / (6)	Densidad seca del material (g / cm3)	1,944				
11	Laboratorio	Densidad máx. seca (gr/cm3)	2,077				
12	Laboratorio	Humedad óptima de laboratorio (%)	8,4				
13	(10) / (11)	Compactación Terreno (%)	93,6				

•	
OBSERVACIONES:	Se libera capa.

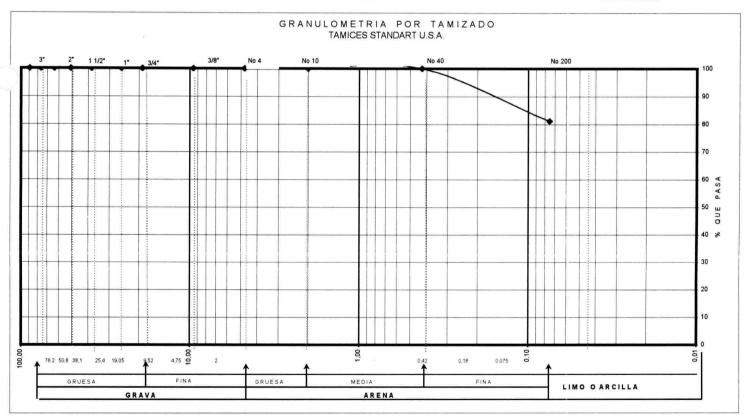
Firma

Geoteonólogo

Compactación especificada (%)

Firma:

Ingeniero Residente



FL.8 ANALISIS GRANULOMETRICO C-259-4-04-04-02 OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 05-May-04 **UBICACIÓN** Calle 43A Sur No. 12-05 MARGEN DERECHO SUELO NATURAL DESCRIPCION: PROF.: 0,55/1,37 m

GRADACION

=	413,8	P2=	
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	00	OO	(00
10	00	00	(60)
40	0,0	0,0	100,0
200	77,8	18,8	81,2
FONDO	336,0	81,2	

-			
	HUMED	AD NATURA	NL
	P1	594	
	P2	482	
	P3	68,2	
	%HUM	27,1	
Límite Líquido			47,20%
Límite Plástico		× _	22,01%
Índice Plasticidad			25,2%
Especificación: sección 13 (IDU)	Grad	acion tipo A	
		_	18,8
Arena (%)		-	81,2
Finos (%)		-	CL
Clasificacion U. S. C. Clasificacion AASHTO	O	=	A-7-5

OBSERVACIONES:

Geotecnólogo

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-04-02

OBRA: UBICACIÓN DESCRIPCION:

	IDU-259-03	
Calle 43A Sur No. 12-05	MARGEN	

SECTOR: DERECHO SAN CRISTOBAL

FECHA:

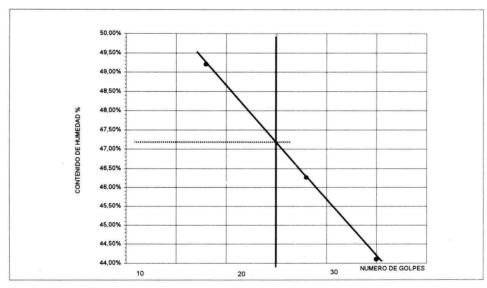
05-May-04

SUELO NATURAL

LIMITE LIQUIDO

Elivii L El GOIDO					
No. De Golpes	35	28	18		
Recipiente No	17	13	6		
P1 gr.	44,88	44,99	45,08		
P2 gr.	35,23	34,91	34,61		
P3 gr.	13,35	13,12	13,33		
% Humedad	44,1%	46,3%	49,2%		

 Límite Liquido
 %
 47,20%


 Límite Plástico
 %
 22,01%

 Indice de Plasticidad
 %
 25,2%

LIMITE PLASTICO

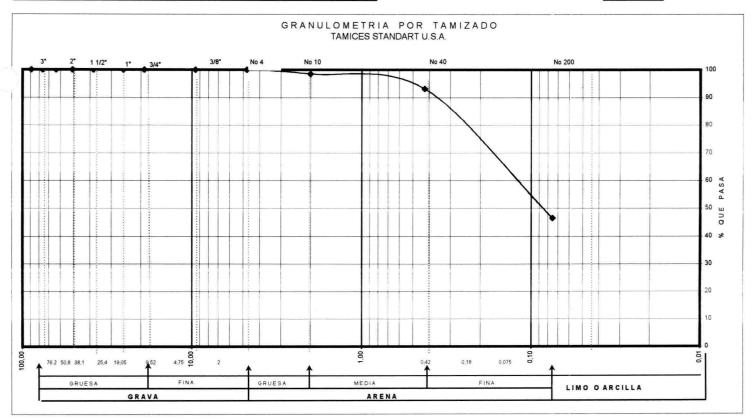
Recipiente No	80	149	
P1 gr.	14,27	14,1	
P2 gr.	12,63	12,32	
P3 gr.	5,17	4,24	
% Humedad	21,98%	22,03%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:



FL-8 ANALISIS GRANULOMETRICO C-259-4-04-04-03

IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 05-May-04 UBICACIÓN Calle 43A Sur No. 12-05 MARGEN DERECHO DESCRIPCION: SUELO NATURAL PROF.: 1,37/2,00 m G R A D A C I O N

P1=	405,9	P2=	217,
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
71	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	6,0	1,5	98,5
40	21,7	5,3	93,2
200	189,4	46,7	46,5
FONDO	188,8	46,5	

	HUMEDA P1 P2	AD NATURA 582 474,9	L
	P3	69,0	
%	НИМ	26,4	
Límite Líquido		_	38,30%
Límite Plástico			19,70%
Índice Plasticidad			18,6%
Especificación: sección 13 (IDU)	Grada	cion tipo A	
Grava (%)		_	0,0
Arena (%)			53,5
Finos (%)		_	46,5
Clasificacion U. S. C.			SC
Clasificacion AASHTO		_	A-6

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-04-04-03

OBRA: UBICACIÓN DESCRIPCION:

	IDU-259-03
Calle 43A Sur No. 12-05	MARGEN
SUELO NATURAL	

SECTOR:

SAN CRISTOBAL

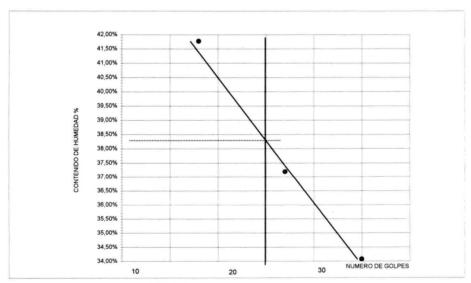
FECHA:

07111 01111

05-May-04

No. De Golpes	LIMITE LI	QUIDO 27	18
Recipiente No	2	9	4
P1 gr.	44,23	43,50	45,04
P2 gr.	36,55	35,25	35,67
P3 gr.	14,01	13,07	13,24
% Humedad	34,1%	37,2%	41,8%

 Límite Liquido
 %
 38,30%


 Límite Plástico
 %
 19,70%

 Indice de Plasticidad
 %
 18,6%

LIMITE PLASTICO

Recipiente No	27	81	
P1 gr.	16,98	16,71	
P1 gr. P2 gr.	15,37	14,94	
P3 gr.	7,15	6,01	
% Humedad	19,59%	19,82%	

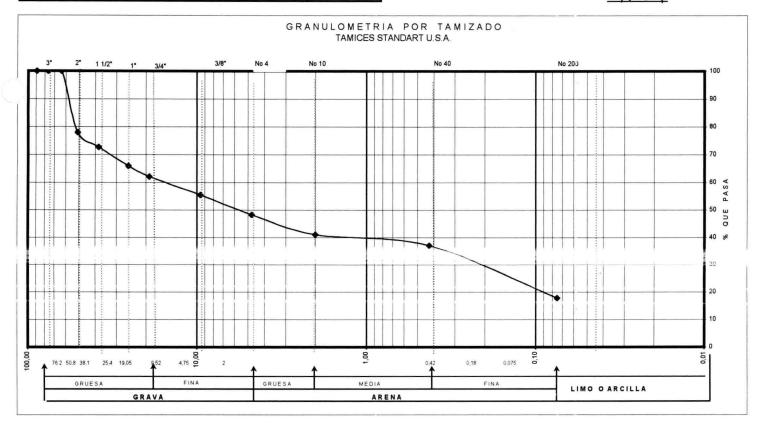
Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-05-02



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04

 UBICACIÓN PROF.:
 Calle 43A Sur No. 12A-4 0,14/0,35 m
 MARGEN IZQUIERDO
 DESCRIPCION:
 RECEBO

 BY
 G R A D A C I O N
 HUMEDAD NATURAL

GRADACION				
P1=	5.680,0	P2=	4.672,	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2*	0,0	0,0	100,0	
3"	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2*	1.258,0	22,1	77,9	
1 1/2"	296,0	5,2	72,6	
1"	384,0	6,8	65,9	
3/4*	216,0	3,8	62,1	
3/8*	374,0	6,6	55,5	
4	408,0	7,2	48,3	
10	410,0	7,2	41,1	
40	230,0	4,0	37,0	
200	1.096,0	19,3	17,7	
FONDO	1.008,0	17,7		
TONDO	1.000,0	17,7		

P1 6406 P2 5930 P3 250,0 %HUM 8,4 Límite Líquido NL Límite Plástico NP Índice Plasticidad 0,0% Especificación: Gradacion tipo A sección 13 (IDU) 51,7 Grava (%) 30,6 Arena (%) 17,7 Finos 6M Clasificacion U.S.C. Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

C	A.C.I. PROYECTOS	A.C.I.PROYECTOS S.A.					
FL - 3	, ,	EN	SAYO DE DENSIDAD EN EL TERRE	NO		C-259-4-04-05-02	
PROYEC	TO:	IDU-259-2003	CALZADA:	FÈCHA:	04-May-04		
SECTOR	:	SAN CRISTOBAL	CAPA No	PROF. TOMA:	0,14/0,35 m		
DESCRIF	PĊION:	1 1 1 1	CANTERA:	CARRIL:		<u></u>	
	Items	ABSCISA				· · · · · · · · · · · · · · · · · · ·	
		Lado					
		Tipo de material					
1	Terreno	Peso frasco y arena inicial (g.)	6.212				
2	Terreno	Peso frasco y arena restante (g.)	, 2.798				
3	Laboratorio	Constante del cono (g.)	1.765				

1.649

1,40

1.178 2.246

8,4

2.072 1,759

1,943

11,0

90,5

Compactación especificada (%)

OBSERVACIONES:

Firma: July

4

5

6

7

8

9

10

11

12

13

(1)-(2)-(3)

Laboratorio

(4) / (5)

Terreno

Terreno

(9) / (6)

(7)/(1+(8))

Laboratorio

Laboratorio

(10) / (11)

Peso de la arena en el hueco (g.)

Densidad de la arena (g. / cm3)

Peso material extraido húmedo (g.)

Peso material extraido seco (g.)

Densidad máx. seça (gr/cm3)

Compactación Terreno (%)

Densidad seca del material (g / cm3)

Humedad óptima de laboratorio (%)

Volumen del hueco (cm3)

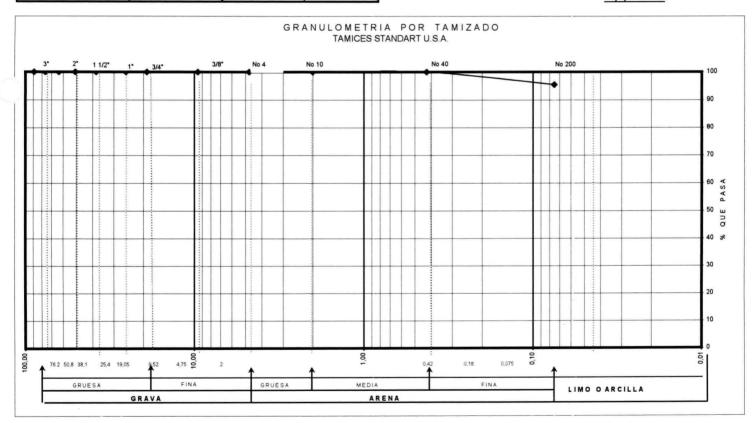
Humedad (%)

Firma:

Ingeniero Residente

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-05-03

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04


 UBICACIÓN
 Calle 43A Sur No. 12A-4 MARGEN
 IZQUIERDO
 DESCRIPCION:
 SUELO NATURAL

 PROF.:
 0,35/0,66 m
 TORRES
 TORRES
 TORRES
 TORRES

GRADACION

P1=	404.0		0.
	191,0	P2=	8,7
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1*	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	8,7	4,6	95,4
FONDO	182,3	95,4	

į	HUMEDAD N	IATURA	L
F	21	358	
F	2	262	
F	23	71,0	
%HU	M	50,3	
Límite Líquido			52,20%
Límite Plástico			28,59%
Índice Plasticidad			23,6%
Especificación: sección 13 (IDU)	Gradacion 1	tipo A	
Grava (%)		_	0,0
Arena (%)		_	4,6
Finos (%)			95,4
Clasificacion U. S. C.			CH
Clasificacion AASHTO			A-7-6

OBSERVACIONES:

FIRMA:

SECTOR:

IZQUIERDO

9 9

LIMITES Y CLASIFICACION

C-259-4-04-05-03

OBRA: UBICACIÓN DESCRIPCION: | IDU-259-03 | Calle 43A Sur No. 12A-42 Este | MARGEN

SAN CRISTOBAL

FECHA:

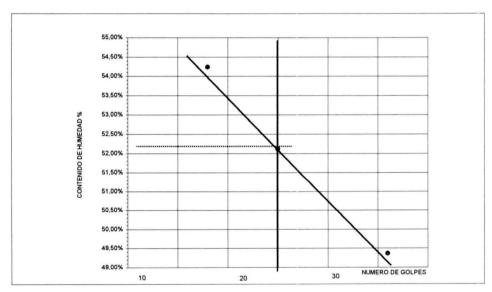
04-May-04

SUELO NATURAL

LIMITE LIQUIDO

EIMITE EIGOIDO					
No. De Golpes	36	25	18		
Recipiente No	5	3	8		
P1 gr.	44,81	45,94	47,98		
P2 gr.	34,44	34,70	36,13		
P3 gr.	13,43	13,13	14,28		
% Humedad	49,4%	52,1%	54,2%		

 Límite Liquido
 %
 52,20%


 Límite Plástico
 %
 28,59%

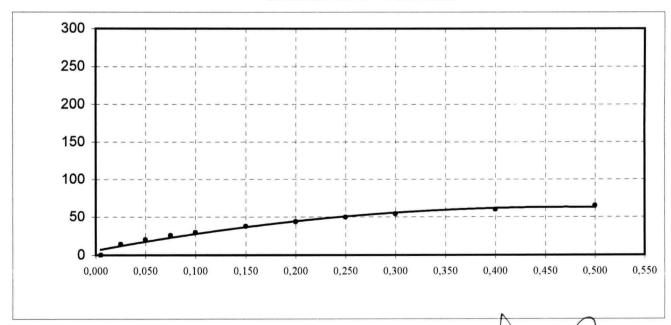
 Indice de Plasticidad
 %
 23,6%

LIMITE PLASTICO

Recipiente No	38	60	
P1 gr.	15,92	15,72	
P2 gr.	13,89	13,58	
P3 gr.	6,82	6,06	
% Humedad	28,71%	28,46%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

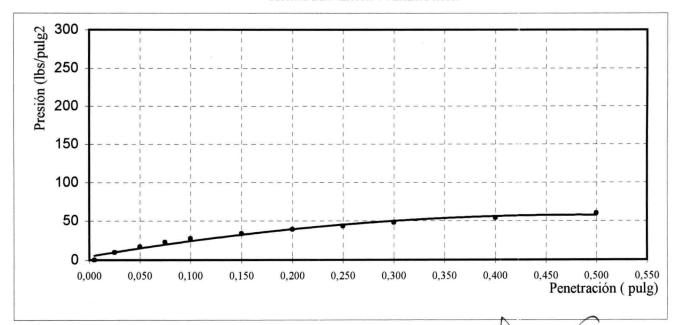
OBSERVACION


Firma:

Firma:

FL - 20		ENSA	YO DE CBR	INALTERADO		C-259-	4-04-05-03
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECH	A:	11-May-04
MARGEN:	IZQUIERDO	1	PROF. m.	0,35/0,66 m	CBR:		1
UBICACIÓN			BARRENO	5	MUES	STRA	3
Molde No.		7 SIN SATU	JRAR		T	PESO UI	NITARIO
Lectura de expansión inicial		0			P-mue	estra gr	191,3
Lectura de expansión 1er día		0			V- mu	estra c.c	111,03
ectura de expansión 2er día		0	".		% HU	IM.	50,3
ectura de expansión 3er día		0			DEN,	SEC gr/cc	1,147
ectura de expansión 4er día		0					
Expansión total %		0,0					
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				
0,005	0	0,00	0,00				
0,025	19,00	41,89	13,96				
0,050	27,00	59,52	19,84				
0,075	35,00	77,16	25,72				
0,100	40,00	88,18	29,39				
0,150	51,00	112,44	37,48				
0,200	59,00	130,07	43,36				
0,250	67,00	147,71	49,24				
0,300	73,00	160,94	53,65				
0,400	81,00	178,57	59,52				
0,500	88,00	194,01	64,67				
lumedad de penetr. %							
CBR Correg. a 01	2,94						
CBR Correg. a 02	2,89						

CURVAS DE PRESION Y PENETRACION


GEOTECHOLOGO TO

INGENIERO

FL - 20		ENSA	YO DE CBR	INALTERADO	C-259-	4-04-05-03
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECHA:	1 <u>1-May-04</u>
MARGEN:	IZQUIERDO		PROF. m.	0,35/0,66 m	CBR:	1
UBICACIÓN			BARRENO	5	MUESTRA	3
Molde No.		7 SATUR	ADO		 PESO UI	NITARIO
Lectura de expansión inicial		0			P-muestra gr	
Lectura de expansión 1er día		6			 V- muestra c.c	
Lectura de expansión 2er día		11			% HUM.	
Lectura de expansión 3er día		19			DEN,SEC gr/cc	
Lectura de expansión 4er día		28,5				
Expansión total %		0,57				
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.			
0,005	0	0,00	0,00			
0,025	13,00	28,66	9,55		4	
0,050	23,00	50,71	16,90			
0,075	31,00	68,34	22,78			
0,100	37,00	81,57	27,19			
0,150	46,00	101,41	33,80			
0,200	53,00	116,84	38,95			
0,250	59,00	130,07	43,36			
0,300	65,00	143,30	47,77			
0,400	73,00	160,94	53,65			
0,500	81,00	178,57	59,52			
Humedad de penetr. %	33,2%					
CBR Correg. a 01	2,72					
CBR Correg. a 02	2,60					

CURVAS DE PRESION Y PENETRACION

CHUCKUT STECHOLOGO

INGENIERO

Arena (%)

Finos (%)

Clasificacion U.S.C.

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-05-04

OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL

04-May-04

UBICACIÓN PROF.: 0,66/2,00 m

Calle 43A Sur No. 12A-4 MARGEN

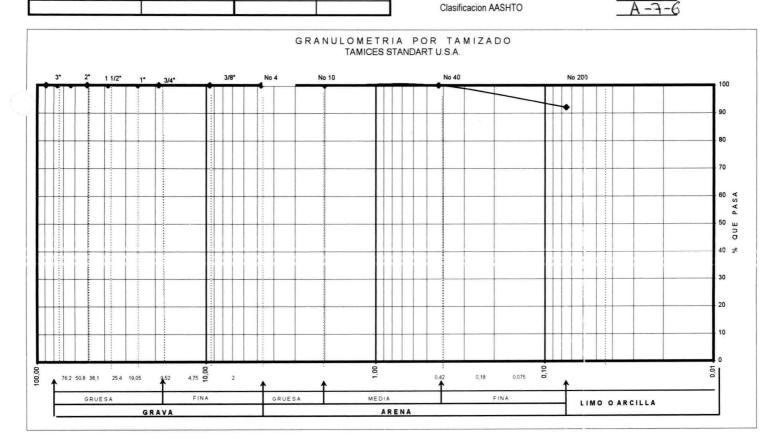
IZQUIERDO

DESCRIPCION:

SUELO NATURAL

7,9

92,1


CH

GRADACION

GRADACION						
P1=	346,4	P2=	27,5			
Tamiz	Peso retenido	% Retenido	% Pasa			
31/2"	0,0	0,0	100,0			
3"	0,0	0,0	100,0			
2" 1/2"	0,0	0,0	100,0			
2"	0,0	0,0	100,0			
1 1/2"	0,0	0,0	100,0			
1"	0,0	0,0	100,0			
3/4"	0,0	0,0	100,0			
3/8"	0,0	0,0	100,0			
4	0,0	0,0	100,0			
10	0,0	0,0	100,0			
40	0,0	0,0	100,0			
200	27,5	7,9	92,1			
FONDO	318,9	92,1				

	HUMED	AD NATURA	L
	P1	518	
	P2	408	
	P3	61,6	
	%HUM	31,8	
Límite Líquido		_	49,60%
Límite Plástico			22,79%
Índice Plasticidad		<u>.</u>	26,8%
Especificación: sección 13 (IDU)	Grada	acion tipo A	
Grava (%)			0,0

FECHA

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-05-04

OBRA: **UBICACIÓN** IDU-259-03 MARGEN

SECTOR: IZQUIERDO SAN CRISTOBAL

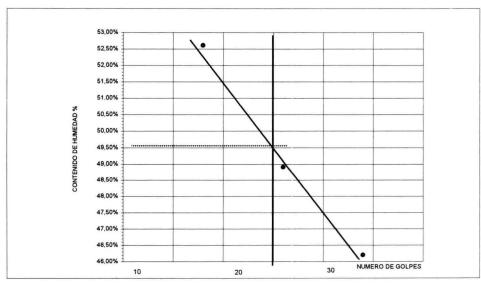
FECHA:

04-May-04

DESCRIPCION:

Calle 43A Sur No. 12A-42 Este SUELO NATURAL

LIMITE LIQUIDO


No. De Golpes	34	26	18
Recipiente No	92	61	68
P1 gr.	42,15	43,39	39,02
P2 gr.	30,54	31,26	27,64
P3 gr.	5,41	6,46	6,01
% Humedad	46,2%	48,9%	52,6%

Límite Liquido %	49,60%
Límite Plástico %	22,79%
Indice de Plasticidad %	26.8%

LIMITE DI ACTICO

Recipiente No	44	102	
P1 gr.	14,4	14,45	
P1 gr. P2 gr. P3 gr.	13,16	12,71	
P3 gr.	7,73	5,06	
% Humedad	22,84%	22,75%	

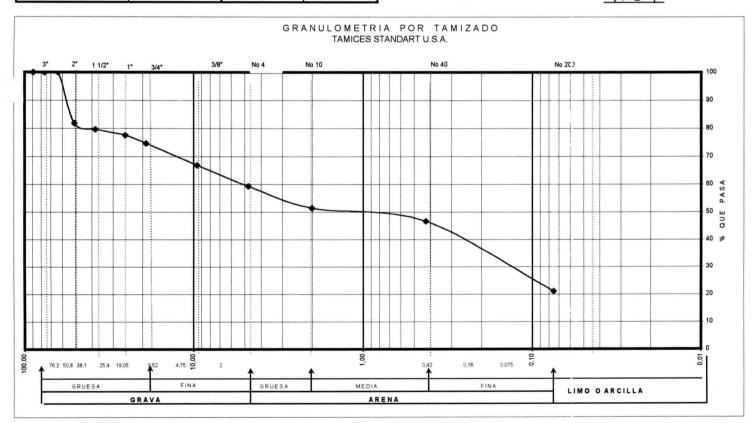
Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-06-01



 OBRÀ:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04

 UBICACIÓN PROF.:
 Calle 43A Sur No. 12B-3 0,14/0,50 m
 MARGEN DERECHO
 DERECHO
 DESCRIPCION:
 RECEBO

GRADACION

CKADACION					
P1=	3.842,0	P2=	3.032,0		
Tamiz	Peso retenido	% Retenido	% Pasa		
31/2"	0,0	0,0	100,0		
3"	0,0	0,0	100,0		
2" 1/2"	0,0	0,0	100,0		
2"	698,0	18,2	81,8		
1 1/2"	86,0	2,2	79,6		
1"	80,0	2,1	77,5		
3/4"	112,0	2,9	74,6		
3/8"	298,0	7,8	66,8		
4	288,0	7,5	59,3		
10	306,0	8,0	51,4		
40	182,0	4,7	46,6		
200	982,0	25,6	21,1		
FONDO	810,0	21,1			

 			TILOLDO
	н	JMEDAD NATUR	AL
	P1	4468	
	P2	4034	
	P3	192,0	
	%HUM	11,3	
Límite Líquido			18,90%
Límite Plástico			13,35%
Índice Plasticidad			5,5%
Especificación: sección 13 (IDU)		Gradacion tipo A	
Grava (%)			40,7
Arena (%)			38,3
Finos (%)			21,1
Clasificacion U. S. C.			6M-GC
Clasificacion AASHT)		A-2-4

OBSERVACIONES:

FIRMA:

FL - 9

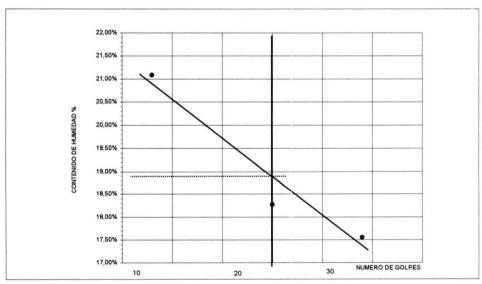
LIMITES Y CLASIFICACION

C-259-4-04-06-01

OBRA: UBICACIÓN DESCRIPCION:

IDU	-259-03	SECTOR:	SAN CRISTOBAL	
Calle 43A Sur No. 12B-33 Este	MARGEN	DERECHO	FECHA:	04-May-04
RECEBO				

LIMITE LIQUIDO

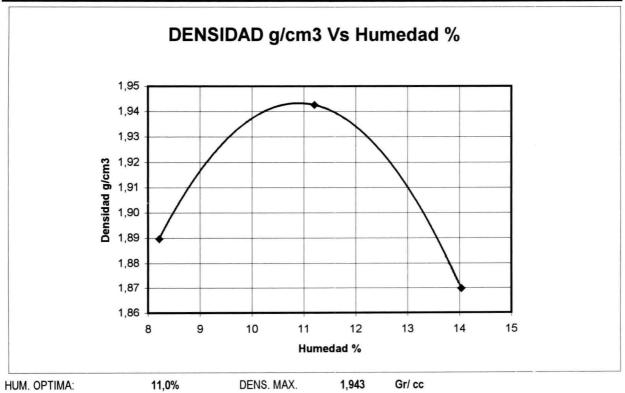

	ENVITE E	QOIDO	
No. De Golpes	34	25	13
Recipiente No	16	65	64
P1 gr.	47,12	57,76	51,06
P2 gr.	41,83	52,10	45,24
P3 gr.	11,69	21,13	17,64
% Humedad	17,6%	18,3%	21,1%

Límite Liquido %	18,90%
Límite Plástico %	13,35%
Indice de Plasticidad %	5,5%

LIMITE PLASTICO

Recipiente No	50	113	
P1 gr.	23,16	25,39	
P2 gr.	21,26	22,93	
P3 gr.	7,18	4,31	
% Humedad	13,49%	13,21%	

Indice de Grupo A.A.S.H.T.O. U.S.C.


OBSERVACION

Firma:

Firma:

A.C.I. PROVECTOS	A.C.I. PROYECTOS	S.A.
FL - 13	ENSAYO DE PROCTOR MODIFICADO	C-259-4-04-06-01

PROYECTO	IDU-259-2003	SECTOR:	SAN CRISTOBA	AL	
MATERIAL: PROFUNDIDAD: ABSCISA:	0,14/0,50 m	CARRIL:	CANTERA:		
Caida: 18 pulg.	Golpes por Capa: 56		FECHA: No Capa 5	13-May-04 Martillo 10 Lb	
Ensayo de Proctor	,	1	2	3	
Peso de la muestra	a húmeda y molde, g	7.414	7.660	7.600	
Peso del molde, g		3.050	3.050	3.050	
Peso de la muestra	a húmeda, g	4.364	4.610	4.550	
Humedad de molde	eo,%	8,2	11,2	14,0	
Peso de la muestra	a seca, g	4.033	4.145	3.990	
Volumén del molde	e, pies3	2134	2134	2134	
Densidad de la mu	estra seca,gr/cm3	1,890	1,943	1,870	
Peso muestra húm	eda + recipiente ,g	305,9	250,0	354,3	
Peso muestra sec	a + recipiente,g	286,6	228,1	315,1	
Peso recipiente, g		51,7	32,7	35,8	
Humedad de molde	eo,%	8,2	11,2	14,0	

Ing. Residente.

Ci	A.C.I. PROYECTOS	A.C.I.PROYECTOS S.A.	. , , , , , , , , , , , , , , , , , , ,
FL - 3		ENSAYO DE DENSIDAD EN EL TERRENO	C-259-4-04-06-01

PROYEC	TO:	IDU-259-2003	CALZADA:		FECHA:	04-May-04	
SECTOR	:	SAN CRISTOBAL,	CAPA No	· · · · · · · · · · · · · · · · · · ·	PROF. TOMA:	0,14/0,50 m	_
DESCRIP	PCION:		CANTERA:		CARRIL:		_
	Items	ABSCISA					
<u> </u>		Lado					
		Tipo de material					
1	Terreno	Peso frasco y arena inicial (g.)	6.644				
2	Terreno	Peso frasco y arena restante (g.)	3.168				
3	Laboratorio	Constante del cono (g.)	1.765				
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	1.711				
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40				
6	(4) / (5)	Volumen del hueco (cm3)	1.222				
7	Terreno	Peso material extraido húmedo (g.)	2.414				
8	Terreno	Humedad (%)	11,3				
9	(7) /(1 + (8))	Peso material extraido seco (g.)	2.169				
10	(9) / (6)	Densidad seca del material (g / cm3)	1,775				·
11	Laboratorio	Densidad máx. seca (gr/cm3)	1,943				
12	Laboratorio	Humedad jóptima de laboratorio (%)	11,0				
, 13	(10) / (11)	Compactación Terreno (%)	91,3				
		Compactación especificada (%)					

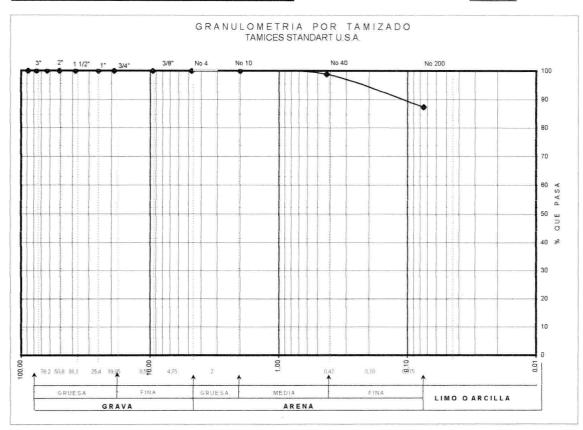
OBSERVACIONES:

Ingeniero Residente

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO


C-259-4-04-06-02

OBRA: 04-May-04 SECTOR: SAN CRISTOBAL **FECHA UBICACIÓN** Calle 43A Sur No. 1 MARGEN DERECHO DESCRIPCION: SUELO NATURAL 0,50/1,48 m

GRADACION

P1=	265,0	P2=	33,6
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4*	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	3,0	1,1	98,9
200	30,6	11,5	87,3
FONDO	231,4	87,3	

HUM	EDAD NATU	RAL
P1	380,6	
P2	298,1	
P3	33,1	
%HUM	31,1	
Límite Líquido		35,70%
Límite Plástico	×	19,22%
Índice Plasticidad		16,5%
sección 13 (IDU)	Gradacion tipo	0.0
Grava (%)		
Arena (%)		12,7
Finos (%)		87,3
Clasificacion U. S. C.		CL
Clasificacion AASHTO		A-6

OBSERVACIONES:

FIRMA:

FL-9

LIMITES Y CLASIFICACION

C-259-4-04-06-02

OBRA:

IDU-259-03

SECTOR: SAN CRISTOBAL

UBICACIÓN Calle 43A Sur No. 12B-33 Es MARGEN

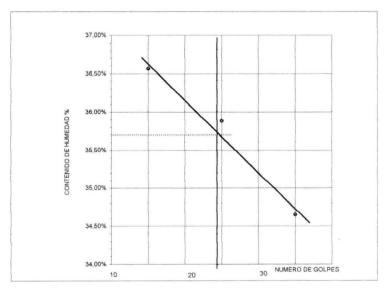
DERECHO

FECHA:

04-May-04

DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO


ENVITE ENGOIDE					
No. De Golpes	35	25	15		
Recipiente No	34	23	35		
P1 gr.	45,67	44,38	42,64		
P2 gr.	35,69	34,49	32,99		
P3 gr.	6,89	6,93	6,60		
% Humedad	34,7%	35,9%	36,6%		

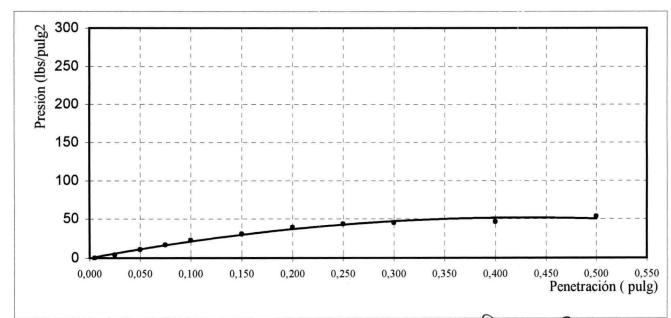
Limite Liquido %	35,70%
Límite Plástico %	19,22%
Indice de Plasticidad	% 16,5%

LIMITE PLASTICO

EINITE LE TOTIO				
Recipiente No	114	124		
P1 gr.	12,95	12,8		
P2 gr.	11,59	11,44		
P3 gr.	4,66	4,21		
% Humedad	19,62%	18,81%	-	

Indice de Grupo A.A.S.H.T.O. U.S.C.

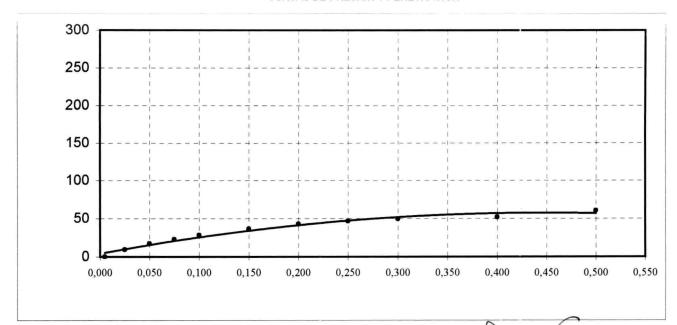
OBSERVACION


Firma:

Firma:

FL - 20		ENSA	ENSAYO DE CBR INALTERADO			C-259-4-04-06-02	
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FEC	HA:	11-May-04
MARGEN:	DERECHO		PROF. m.	0,50/1,48 m	CBF	₹:	1
UBICACIÓN			BARRENO	6	MUE	ESTRA	2
Molde No.		18 SATUR	ADO			PESO UN	NITARIO
Lectura de expansión inicial		0			P-m	uestra gr	
Lectura de expansión 1er día		1,5			V- m	nuestra c.c	
Lectura de expansión 2er día		6				IUM.	
Lectura de expansión 3er día		11			DEN	N,SEC gr/cc	
Lectura de expansión 4er día		17					
Expansión total %		0,34					
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				
0,005	0	0,00	0,00				
0,025	6,00	13,23	4,41		7		
0,050	15,00	33,07	11,02				
0,075	23,00	50,71	16,90				
0,100	31,00	68,34	22,78				
0,150	42,00	92,59	30,86				
0,200	53,00	116,84	38,95				
0,250	59,00	130,07	43,36				
0,300	61,00	134,48	44,83				
0,400	63,00	138,89	46,30				
0,500	72,00	158,73	52,91				
Humedad de penetr. %	47,2%						
CBR Correg. a 01	2,28						
CBR Correg. a 02	2,60						

CURVAS DE PRESION Y PENETRACION


GEOVECNOCOGO

INGENIERO

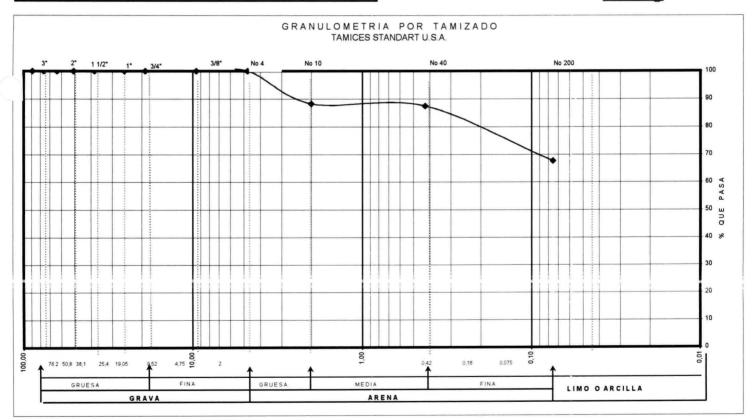
FL - 20	ENSAYO DE CBR INALTERADO					C-259-4-04-06-02		
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL			FECHA:	11-May-04
MARGEN:	DERECHO		PROF. m.	0,50/1,48 m			CBR:	1
UBICACIÓN			BARRENO	6			MUESTRA	2
Molde No.		18 SIN SAT	URAR				PESO UNITARIO	
Lectura de expansión inicial		0				1	P-muestra gr	213,9
Lectura de expansión 1er día		0					V- muestra c.c	98,02
Lectura de expansión 2er día		0				(% HUM.	31,1
Lectura de expansión 3er día		0				1	DEN,SEC gr/cc	1,664
Lectura de expansión 4er día		0						
Expansión total %		0,0						
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.					
0,005	0	0,00	0,00					
0,025	13,00	28,66	9,55					
0,050	23,00	50,71	16,90					
0,075	31,00	68,34	22,78					
0,100	38,00	83,78	27,93					
0,150	49,00	108,03	36,01					
0,200	58,00	127,87	42,62					
0,250	63,00	138,89	46,30					
0,300	67,00	147,71	49,24					
0,400	70,00	154,32	51,44					
0,500	82,00	180,78	60,26					
Humedad de penetr. %	31,1%							
CBR Correg. a 01	2,79							
CBR Correg. a 02	2,84							

CURVAS DE PRESION Y PENETRACION

GEOTECNOLOGO

INGENIERO

FL:8 ANALISIS GRANULOMETRICO C-259-4-04-06-03



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04

 UBICACIÓN PROF.:
 Calle 43A Sur No. 12B-3 1,48/2,00 m
 MARGEN
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

GRADACION

P1=	512,4	P2=	165,5
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8*			100,0
4	0,0	0,0	100,0
10	60,0	11,7	88,3
40	4,3	0,8	87,5
200	101,2	19,8	67,7
FONDO	346,9	67,7	

	HUMED	AD NATURA	L
	P1	774	
	P2	622	
	P3	109,6	
	%HUM	29,7	
Límite Líquido		_	47,10%
Límite Plástico			21,75%
Índice Plasticidad			25,3%
Especificación: sección 13 (IDU)	Grada	acion tipo A	
Grava (%)		_	0,0
Arena (%)		_	32,3
Finos (%)			67,7
Clasificacion U. S. C.			CL
Clasificacion AASHT0)		A-7-
		_	

OBSERVACIONES:

FIRMA:

LIMITES Y CLASIFICACION

C-259-4-04-06-03

OBRA: **UBICACIÓN**

IDU-259-03 Calle 43A Sur No. 12B-33 Este MARGEN

SECTOR: DERECHO

SAN CRISTOBAL

04-May-04

DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO

LIMITE EIGOIDO					
25	13				
51	146				
47,06	36,66				
34,19	25,72				
6,84	4,38				
47,1%	51,3%				
	51 47,06 34,19 6,84				

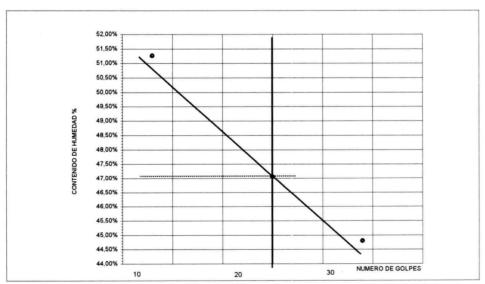
Límite Liquido %

FECHA:

47,10%

Límite Plástico %

21,75%


Indice de Plasticidad %

25,3%

LIMITE PLASTICO

LIMITETEASTICO				
Recipiente No	118	122		
P1 gr.	13,8	13,09		
P2 gr. P3 gr.	12,17	11,49		
P3 gr.	4,65	4,16		
% Humedad	21,68%	21,83%		

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-07-02

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04

 UBICACIÓN
 Calle 43A Sur No. 1 MARGEN
 EJE
 DESCRIPCION:
 RECEBO

GRADACION

0,14/0,45 m

	GRADACION						
P1=	1.587,9	P2=	1.292,0				
Tamiz	Peso retenido	% Retenido	% Pasa				
31/2"	0,0	0,0	100,0				
3"	0,0	0,0	100,0				
2" 1/2"	0,0	0,0	100,0				
2"	0,0	0,0	100,0				
1 1/2"	268,0	16,9	83,1				
1"	208,0	13,1	70,0				
3/4"	98,0	6,2	63,9				
3/8"	166,0	10,5	53,4				
4	142,0	8,9	44,5				
10	106,0	6,7	37,8				
40	112,0	7,1	30,7				
200	192,0	12,1	18,6				
FONDO	295,9	18,6					

P1	1896	
P2	1694	
P3	106,1	
%HUM	12,7	
Limite Liquido		33,05%
Limite Plástico		24,05%
Índice Plasticidad		0.00/
	Gradacion tipo	9,0% .A
Especificación: sección 13 (IDU)	Gradacion tipo	A
Especificación: sección 13 (IDU)	Gradacion tipo	55,5
Especificación: sección 13 (IDU) Grava (%)	Gradacion tipo	A
Especificación: sección 13 (IDU) Grava (%)	Gradacion tipo	55,5

OBSERVACIONES:

FIRMA:

FL-9

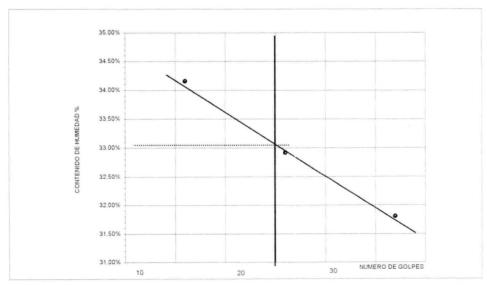
LIMITES Y CLASIFICACION

C-259-4-04-07-02

OBRA: UBICACIÓN DESCRIPCION:

II	IDU-259-03		SAN CRISTOBAL	
Calle 43A Sur No. 13A-05	MARGEN	EJE	FECHA:	04-May-04
RECEBO				

LIMITE LIQUIDO


Emilia English					
No. De Golpes	37	26	16		
Recipiente No	11	1	14		
P1 gr.	39,60	52,36	53,32		
P2 gr.	33,28	42,86	43,06		
P3 gr.	13,41	14,00	13,02		
% Humedad	31,8%	32,9%	34.2%		

Límite Liquido %	33,05%
Límite Plástico %	24,05%
Indice de Plasticidad %	9,0%

LIMITE PLASTICO

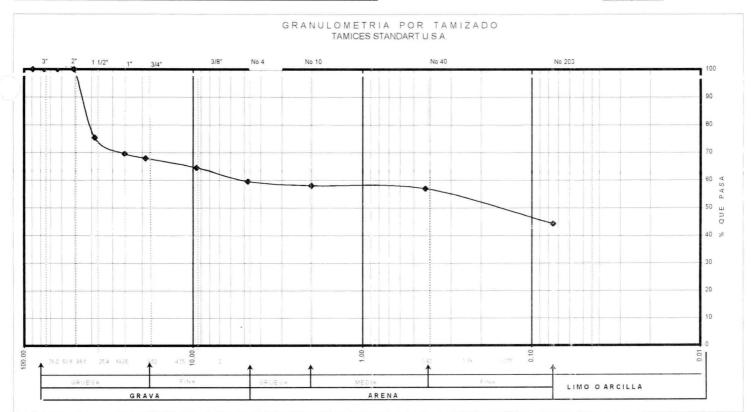
Recipiente No	39	35	
P1 gr.	14,09	17.74	
P1 gr. P2 gr. P3 gr.	12,59	15,59	
P3 gr.	6,39	6,60	
% Humedad	24,19%	23,92%	

Indice de Grupo
A.A.S.H.T.O.
U.S.C.

OBSERVACION

Geotecnólogo

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-07-03



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04

 UBICACIÓN PROF.:
 Calle 43A Sur No. 13A-0 0,45/1,70 m
 MARGEN DESCRIPCION:
 EJE
 DESCRIPCION:
 SUELO NATURAL

GRADACION

P1=	1.078,0	P2=	600,0	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2"	0,0	0,0	100,0	
3"	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2"	0,0	0,0	100,0	
1 1/2"	266,0	24,7	75,3	
1"	62,0	5,8	69,6	
3/4*	18,0	1,7	67,9	
3/8"	36,0	3,3	64,6	
4	54,0	5,0	59,6	
10	16,0	1,5	58,1	
40	12,0	1,1	57,0	
200	136,0	12,6	44,3	
FONDO	478,0	44,3		

	HUME	DAD NATURA	L
	P1	1370	
*	P2	1188	
	P3	110,0	
	%HUM	16.9	
Límite Líquido		_	34,25%
Limite Plástico			16,74%
Índice Plasticidad			17,5%
Especificación: sección 13 (IDU)	Grad	lacion tipo A	
Grava (%)		_	40,4
Arena (%)			15,2
Finos (%)		-	44,3
Clasificacion U. S. C.			60
Clasificacion AASHTO			A-6

OBSERVACIONES:

FIRMA

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-07-03

OBRA: **UBICACIÓN** DESCRIPCION:

IDU-259-03 Calle 43A Sur No. 13A-05 MARGEN

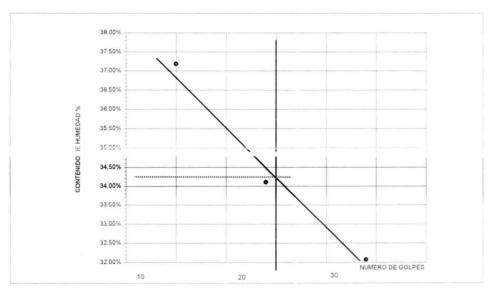
SECTOR: SAN CRISTOBAL EJE

FECHA:

04-May-04

SUELO NATURAL

LIMITE LIQUIDO


No. De Golpes	34	24	15
Recipiente No	7	18	63
P1 gr.	49,85	48.57	44,37
P2 gr.	41,10	39.66	35.28
P3 gr.	13,81	13,53	10.83
% Humedad	32,1%	34,1%	37,2%

Límite Liquido %	34,25%
Límite Plástico %	16,74%
Indice de Plasticidad %	17,5%

LIMITE PLASTICO

Recipiente No	68	92	
P1 ar	16.72	16.74	
P1 gr. P2 gr. P3 gr.	15,19	15,11	
P3 gr.	6.01	5,41	
% Humedad	16,67%	16,80%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

Geotecnólogo

OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO C-259-4-04-08-02

OBRA: UBICACIÓN IDU-259-03

SECTOR:

SAN CRISTOBAL

FECHA

HUMEDAD NATURAL

04-May-04

PROF.:

Calle 43A Sur No. 13B E **MARGEN** 0,12/0,47 m

DERECHO

DESCRIPCION:

RECEBO

C		٨	n	Λ	~	10	M
G	n	М	υ	М	U	ı	1.4

P1=	2.433,9	P2=	2.044,	
Tamiz	Peso retenido	% Retenido	% Pasa	
31/2"	0,0	0,0	100,0	
3*	0,0	0,0	100,0	
2" 1/2"	0,0	0,0	100,0	
2*	0,0	0,0	100,0	
1 1/2"	350,0	14,4	85,6	
1*	276,0	11,3	74,3	
3/4"	126,0	5,2	69,1 62,6	
3/8*	158,0	6,5		
4	212,0	8,7	53,9	
10	302,0	12.4	41,5	
40	216,0	8,9	32,6	
200	404,0	16,6	16,0	
FONDO	389,9	16,0		

P1 2838 P2 2550 P3 116,1 %HUM 11,8

 Limite Liquido
 21,10%

 Limite Plástico
 16,03%

 Índice Plasticidad
 5,1%

Especificación Gradacion tipo A

sección 13 (IDU)

 Grava
 (%)
 46.1

 Arena
 (%)
 37,9

 Finos
 (%)
 16,0

 Clasificacion U. S. C.
 GH-6C

 Clasificacion AASHTO
 A-1-b

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

MARGEN

C-259-4-04-08-02

OBRA: **UBICACIÓN** DESCRIPCION: IDU-259-03

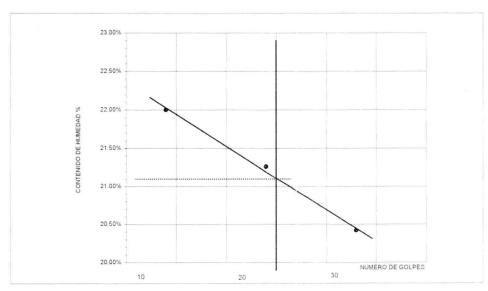
SECTOR: DERECHO

SAN CRISTOBAL FECHA:

Calle 43A Sur No. 13B Este RECEBO

04-May-04

LIMITE LIQUIDO


ENVITE EIGOIDO					
No. De Golpes	33	24	14		
Recipiente No	75	71	79		
P1 gr.	57,96	55,27	59,13		
P2 gr.	51,58	49,11	52,23		
P3 gr.	20,33	20,14	20,87		
% Humedad	20,4%	21,3%	22,0%		

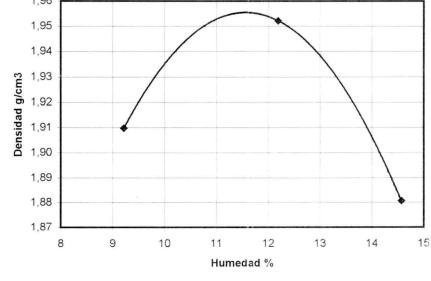
Limite Liquido % 21,10% 16,03% Límite Plástico % 5,1% Indice de Plasticidad %

LIMITE PLASTICO

ENVITE LEAGUED				
Recipiente No	118	122		
P1 gr.	11,64	11,14		
P2 gr. P3 gr.	10,68	10,17		
P3 gr.	4,65	4,16		
% Humedad	15,92%	16,14%		

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION


Firma:

Firma:

PROYECTO	IDU-259-2003	SECTOR:	SAN CRISTOBA	AL.	
MATERIAL: PROFUNDIDAD: ABSCISA:	0,12/0,47 m	CARRIL:	CANTERA:		
			FECHA:	13-May-04	·
Caida: 18 pulg.	Golpes por Capa: 56		No Capa 5	Martillo	10 Lb
Ensayo de Proctor		1	2	3	
Peso de la muestra	a húmeda y molde, g	7.501	7.724	7.648	
Peso del molde, g		3.050	3.050	3.050	
Peso de la muestra	a húmeda, g	4.451	4.674	4.598	
Humedad de molde	eo,%	9,2	12,2	14,6	1
Peso de la muestra	a seca, g	4.075	4.166	4.013	
Volumén del molde	e, pies3	2134	2134	2134	
Densidad de la mu	estra seca,gr/cm3	1,910	1,952	1,881	
Peso muestra húm	eda + recipiente ,g	301,2	222,2	317,2	
Peso muestra sec		278,8	201,5	285,7	
Peso recipiente, g		35,8	31,7	69,5	
Humedad de molde	eo,%	9,2	12,2	14,6	

DENSIDAD g/cm3 Vs Humedad %

HUM. OPTIMA:

11,7%

DENS. MAX.

1,956

Gr/cc

Secteon of section of

Ing. Residente.

	A.C.I. PROYECTOS		ACIPR	OYECTOS	SSA		
		<u> </u>					
FL - 3		EN	SAYO DE DENSIDAD EN EL T	ERRENO			C-259-04-04-08-02
PROYEC	то:	IDU-259-2003	CALZADA:		FECHA:		
SECTOR	!:		CAPA No		PROF. TOMA:	0,12-0,47m	
DESCRI	PCION:		CANTERA:		CARRIL:		
	Items	ABSCISA					
		Lado					
		Tipo de material					
1	Terreno	Peso frasco y arena inicial (g.)	7.298				·
2	Terreno	Peso frasco y arena restante (g.)	3.688				
3	Laboratorio	Constante del cono (g.)	1.765				
4	(1)-(2)-(3)	Peso de la arena en el hueco (g.)	1.845				
5	Laboratorio	Densidad de la arena (g. / cm3)	1,40				
6	(4) / (5)	Volumen del hueco (cm3)	1.318				
7	Terreno	Peso material extraido húmedo (g.)	2.641				
8	Terreno	Humedad (%)	12,8				

OBSERVACIONES:

2.341

1,777

1,956

11,7

90,8

Firma

(7)/(1+(8))

Laboratorio

Laboratorio

(10) / (11)

(9) / (6)

9

10

11

12

13

Peso material extraido seco (g.)

Densidad máx. seca (gr/cm3)

Compactación Terreno (%)

Compactación especificada (%)

Densidad seca del material (g / cm3)

Humedad óptima de laboratorio (%)

Firma:

Ingeniero Residente

UBICACIÓN

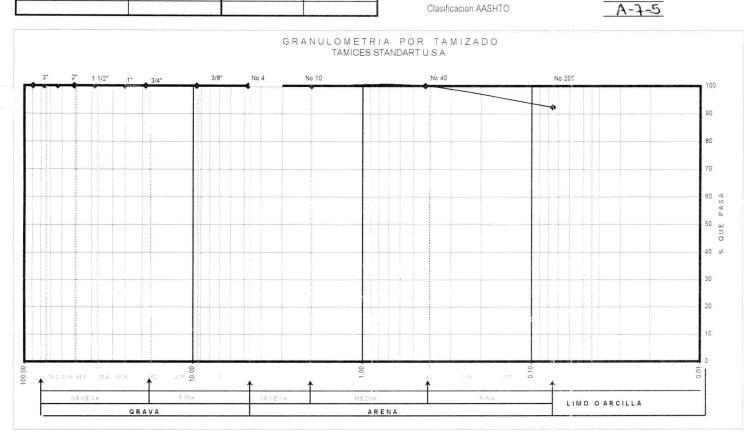
A.C.I. PROYECTOS S.A.

DESCRIPCION:

FL-8 -ANALISIS GRANULOMETRICO C-259-4-04-08-03

OBRA: IDU-259-03 SECTOR: 04-May-04 SAN CRISTOBAL **FECHA** DERECHO

PROF.: 0,47/1,24 m


GRADACION

Calle 43A Sur No. 13B E MARGEN

P1=	398,4	P2=	30,4
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	30,4	7,6	92,4
FONDO	368,0	92,4	

	HUME	DAD NATURA	L
	P1	620	
	P2	466	
	P3	67,6	
	%HUM	38,7	
Limite Liquido		_	50,60%
Limite Plástico		_	39,33%
Índice Plasticidad			11,3%
Especificación: sección 13 (IDU)	Grad	lacion tipo A	0.0
Second Second		-	7,6
Arena (%)		_	
Finos (%)			92,4
Clasificacion U.S.C.			MH

SUELO NATURAL

OBSERVACIONES:

FIRMA

OBRA:

FL - 9

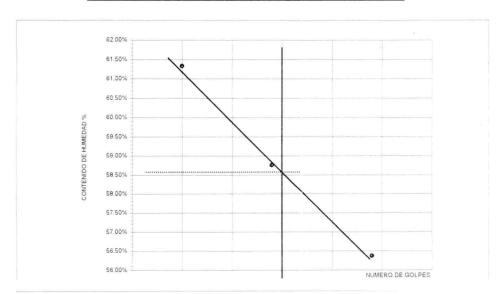
LIMITES Y CLASIFICACION

C-259-4-04-08-03

UBICACIÓN DESCRIPCION:

ID	U-259-03	SECTOR:	SAN CRISTOBAL	
Calle 43A Sur No. 13B Este	MARGEN	DERECHO	FECHA:	04-May-04
SUELO NATURAL				-

LIMITE LIQUIDO


		QUIDO	
No. De Golpes	34	24	15
Recipiente No	66	78	15
P1 gr.	42,29	38,88	45,46
P2 gr.	33,62	28,82	35,15
P3 gr.	18,24	11,70	18,34
% Humedad	56.4%	58,8%	61,3%

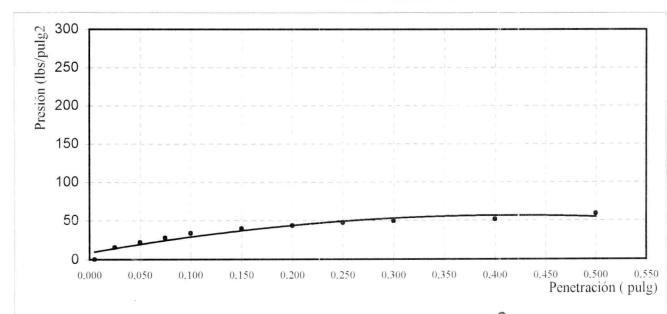
Limite Liquido %	50,60%
Límite Plástico %	39,33%
Indice de Plasticidad %	11,3%

LIMITE PLASTICO

Recipiente No	115	143	
P1 gr.	14.61	14.71	
P2 gr.	11.84	11.76	
P3 gr.	4.76	4,30	
% Humedad	39,12%	39,54%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

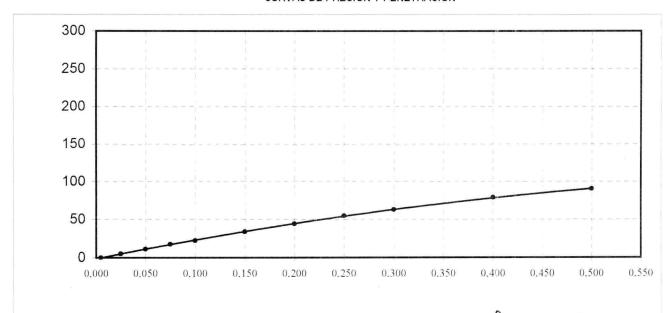
CDCERVACION


Firma:

Firma:

FL - 20		ENSA	YO DE CBR	INALTERADO	C-259-4-04-08-03
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECHA: 11-May-04
MARGEN:	DERECHO		PROF. m.	0,47/1,24 m	CBR: 1
UBICACIÓN			BARRENO	8	MUESTRA 3
Molde No	T	4 SATUR	ADO		PESO UNITARIO
Lectura de expansión inicial		0			P-muestra gr
Lectura de expansión 1er día		2			V- muestra c.c
Lectura de expansion 2er dia		8			% HUM.
Lectura de expansión 3er día		15			DEN,SEC gr/cc
Lectura de expansión 4er día		26			-
Expansión total %		0,52			
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.		
0,005	0	0,00	0,00		
0,025	21,00	46,30	15,43		
0,050	30,00	66,14	22,05		
0,075	38,00	83,78	27,93		
0,100	46,00	101,41	33,80		
0,150	54.00	119,05	39,68		
0,200	59,00	130,07	43,36		
0,250	64,00	141,10	47,03		
0,300	67,00	147,71	49,24		
0,400	70,00	154,32	51,44		
0,500	80,00	176,37	58,79		
Humedad de penetr. %	53,1%				
CBR Correg. a 01	3,38				
CBR Correg. a 02	2,89				

CURVAS DE PRESION Y PENETRACION


Justing GEOTECNOLOGO

INGENIERO

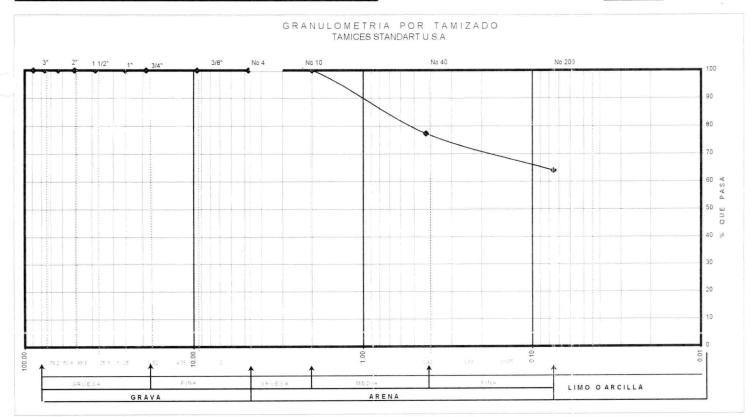
FL - 20		ENSA	YO DE CBR	INALTERADO	C-259-	4-04-08-03
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECHA:	11-May-04
MARGEN:	DERECHO		PROF. m.	0,47/1,24 m	CBR:	1
UBICACIÓN	,		BARRENO	8	MUESTRA	3
Molde No.		4 SIN SAT	URAR		PESO U	NITARIO
Lectura de expansión inicial		0			P-muestra gr	134,8
Lectura de expansión 1er día		0			V- muestra c.c	94,2
Lectura de expansión 2er día		0			% HUM.	11,8
Lectura de expansión 3er día		0			DEN,SEC gr/co	1,280
Lectura de expansión 4er día		0				
Expansion total %		0,0				
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.			
0,005	0	0,00	0,00			
0,025	7,00	15,43	5,14			
0,050	15,00	33,07	11,02			
0,075	24,00	52,91	17,64			
0,100	30,00	66,14	22,05			
0,150	46,00	101,41	33,80			
0,200	60,00	132,28	44,09			
0,250	74,00	163,14	54,38			
0,300	85,00	187,39	62,46			
0,400	107,00	235,89	78,63			
0,500	123,00	271,17	90,39			
Humedad de penetr. %	11,8%					
CBR Correg a 01	2,20					
CBR Correg. a 02	2,94					

CURVAS DE PRESION Y PENETRACION

SEOTECHOLOGO

INGENIERO.

FL-E ANALISIS GRANULOMETRICO C-259-4-04-08-04



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 04-May-04

 UBICACIÓN PROF.:
 Calle 43A Sur No. 13B E MARGEN 1,24/2,00 m
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

GRADACION

P1=	207.1	P2=	74,7
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0.0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8*	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	46,9	22,6	77,4
200	27,8	13,4	63,9
FONDO	132,4	63,9	

н	UMEDAD NATUR	AL
P1	538	
P2	270,4	
P3	63,3	
%HUM	129.2	
Limite Liquido		53,80%
Limite Plástico		38,35%
Índice Plasticidad		15,4%
Especificación: sección 13 (IDU)	Gradacion tipo A	
Grava (%)	_	0,0
Arena (%)		36,1
Finos (%)		63,9
Clasificacion U. S. C.		MH
Clasificacion AASHTO		A-7

OBSERVACIONES:

FIRMA

FL - 9

LIMITES Y CLASIFICACION

C-259-4-04-08-04

OBRA: UBICACIÓN DESCRIPCION:

		IDU-259-03	
Calle 43A Sur No. 13I	B Este	MARGEN	

SECTOR: DERECHO SAN CRISTOBAL

FECHA:

OAN

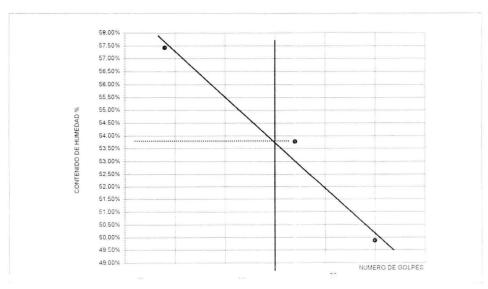
04-May-04

SUELO NATURAL

LIMITE LIQUIDO

LIMITE LIQUIDO							
35	27	14					
72	70	76					
49,49	54,29	52,86					
40,32	42,80	41,17					
21.93	21,43	20.81					
49.9%	53,8%	57.4%					
	35 72 49,49 40,32 21,93	35 27 72 70 49,49 54,29 40,32 42,80 21,93 21,43					

 Límite Liquido %
 53,80%


 Límite Plástico %
 38,35%

 Indice de Plasticidad %
 15,4%

LIMITE PLASTICO

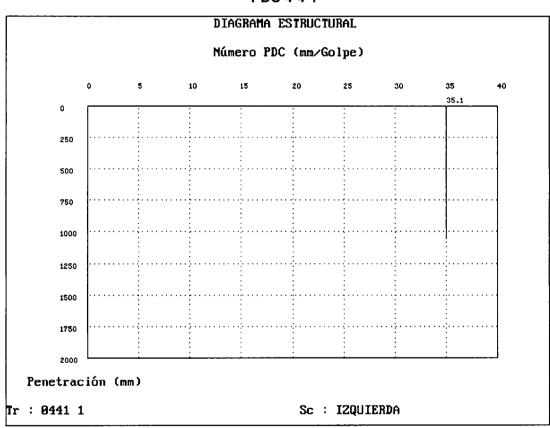
LIMITE PLASTICO						
Recipiente No	117	123				
P1 gr.	13,39	13,20				
P2 gr.	10.95	10,75				
P3 gr.	4.60	4,35				
% Humedad	38,43%	38,28%				

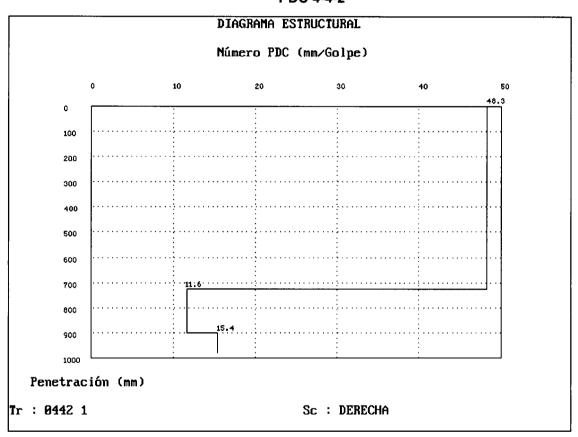
Indice de Crupe A.A.S.H. I.O. U.S.C.

OBSERVACION

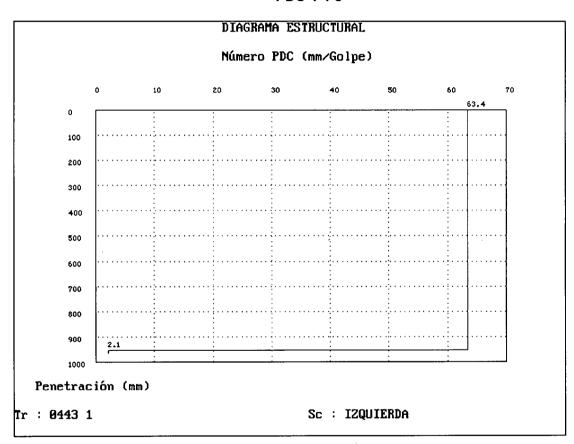
Firma:

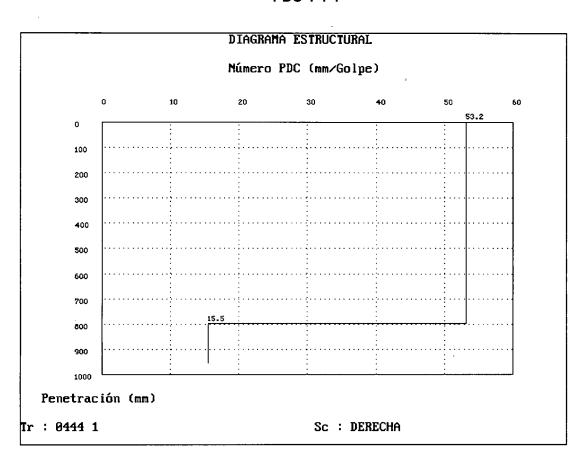
Firma:

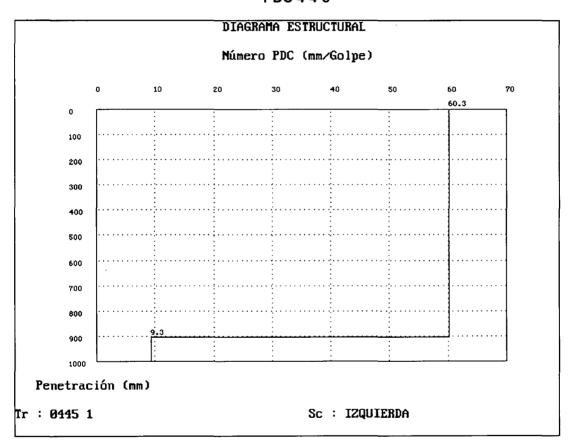


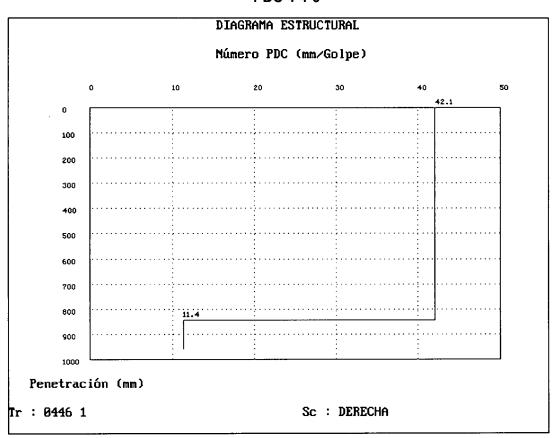

ENSAYOS DE PENETRACIÓN CON CONO

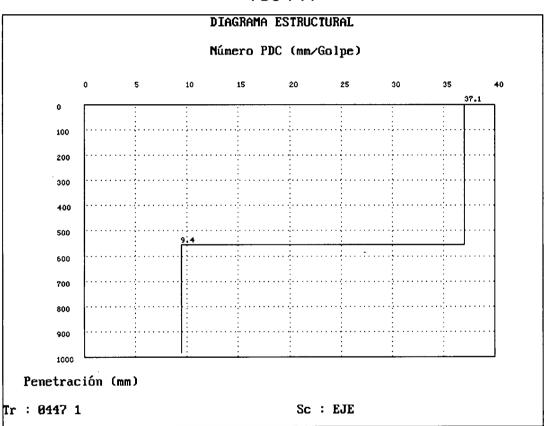
MOVILIDAD
Instituto de Desarrollo Urbano

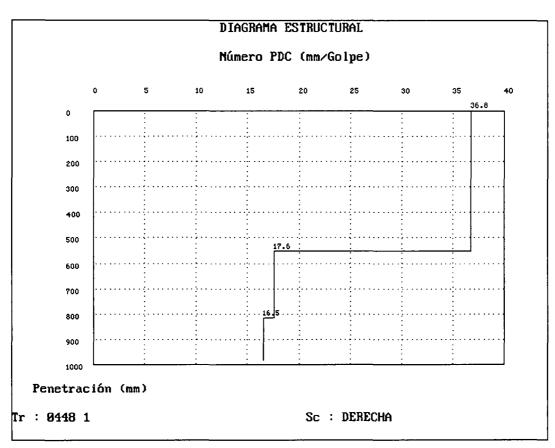

PDC 4-4-1


PDC 4-4-2


PDC 4-4-3


PDC 4-4-4


PDC 4-4-5


PDC 4-4-6

PDC 4-4-7

PDC 4-4-8

NÚMERO DE EJES SIMPLES, TANDEM Y TRIDEM DE DIFERENTES CARGAS - DURANTE EL PERIODO DE DISEÑO

AÑO	AUTOS	COLECTIVOS	BUSES - BUSETAS	BUSES ALIMENTADORES	C2-P	C2-G	C3-C4	C5	>C5
2005	167	0	0	25	6	12	0	0	1
2006	169	0	0	26	6	12	0	0	1
2007	171	0	0	26	6	12	0	0	1
2008	173	0	0	26	6	12	0	0	1
2009	175	0	0	27	6	12	0	0	1
2010	177	0	0	27	6	12	0	0	1
2011	179	0	0	27	6	12	• 0	0	_1
2012	181	0	0	28	6	13	0	0	1
2013	183	0	0	28	6	13	0	0	1
2014	184	0	0	28	6	13	0	0	2
2015	186	0	0	28	6	13	0	0	2
2016	188	0	0	29	7	13	0	0	2
2017	190	0	0	29	7	13	0	0	2
2018	191	0	0	29	7	13	0	0	2
2019	193	0	0	29	7	13	0	0	2
2020	195	0	0	30	7	14	0	0	2
2021	197	0	0	30	7	14	0	0	2
2022	199	0	0	30	7	14	0	0	2
2023	201	0	0	30	7	14	0	0	2
2024	202	0	0	31	7	14	0	0	2
TOTAL PERIODO DE DISEÑO	1350497	0	0	205273	46971	93832	0	0	11018

EJE SIMPLE DE 8.0 T	46971
EJE SIMPLE DE 9.0 T	93832
EJE SIMPLE DE 9.5 T	205273
EJE TANDEM DE 20.0 T	11018
EJE TANDEM DE 23.0 T	0
EJE TRIDEM DE 24 T	11018

NÚMERO DE EJES SIMPLES DE 8.2 T - DURANTE EL PERIODO DE DISEÑO

AÑO	AUTOS	COLECTIVOS	BUSES - BUSETAS	BUSES ALIMENTADORES	C2-P	C2-G	C3-C4	C5	>C5
2005	167	0	0	25	6	12	0	0	1
2006	169	0	0	26	6	12	0	0	1
2007	171	0	0	26	6	12	0	0	1
2008	173	0	0	26	6	12	0	0	1
2009	175	0	0	27	6	12	0	0	1
2010	177	0	0	27	6	12	0	0	1
2011	179	0	0	27	6	12	0	0	1
2012	181	0	0	28	6	13	0	0	1
2013	183	0	0	28	6	13	0	0	1
2014	184	0	0	28	6	13	0	0	2
2015	186	0	0	28	6	13	0	0	2
2016	188	0	0	29	7	13	0	0	2
2017	190	0	0	29	7	13	0	0	2
2018	191	0	0	29	7	13	0	0	2
2019	193	0	0	29	7	13	0	0	2
2020	195	0	0	30	7	14	0	0	2
2021	197	0	0	30	7	14	0	0	2
2022	199	0	0	30	7	14	0	0	2
2023	201	0	0	30	7	14	0	0	2
2024	202	0	0	31	7	14	0	0	2
TOTAL PERIODO DE DISEÑO	1350497	0	0	205273	46971	93832	0	0	11018
DAÑO	0	0	0,90	2,50	1,14	3,96	5,00	4,34	6,26
Ni	0	0	0	513182	53547	371575	0	0	68974

N TOTAL 1,01E+06

PORTLAND CEMENT ASSOCIATION METHOD

	Λ	Metric Units	i	English Units	
ETE DATA					
Modulus of Rupture	MR	43,00	kg/cm2	611,60	psi
Thickness	Н	20,50		8,07	in
Modulus of Elasticity	E1	294000		4.200.000	psi
Unit Weight	WT	VI-1207 U 12 327 De	kg/m3	133	pcf
Coef. of Thermal expansion	CT	3,60E-06		2,00E-06	/°F
Poisson's ratio	u	0,15		0,15	
Radius of Relative Stiffness	Ī	84,86	cm	33,41	in
Coefficient of Variation	CV	0,15	ISPAC S	0,15	7() [2
ENT DATA	7 2 2		-11.74 NO	ALC BEING	1.3
			N. A. S. S.		
Total Width	Tw	7,00		22,97	ft
Numbers of Lanes	NI	2,00		6,56	ft
Width Lane	W	3,50		11,48	ft
Slab Length	SI	3,50	m	11,48	ft
Concrete Shoulders	Sh	No		es or no)	
Doweled Joints	Dj	Yes		es or no)	
Tie Bars	Tb	Yes		es or no)	
Annual Growth Rate	Tca		%	0	%
Desing Period	Dp	20	Years	20	Year
Drying Shrinkage Coefficient	Lse	0,0002		0,0002	
ATION PAVEMENT STRUCTU	JRE				
C.B.R.	CBR	3,00	%	3,00	%
C.B.R. K on Top off Sub Base	CBR K		% k/cm2	3,00 151,06	% pci
K on Top off Sub Base	K		k/cm2		354.0
K on Top off Sub Base	K	4,19 or Treated) =	k/cm2	151,06	
K on Top off Sub Base Sub Base Type (Choisse	K e Untreated Depth	4,19 or Treated) =	k/cm2	151,06	pci
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base	K e Untreated Depth	4,19 or Treated) = -	k/cm2 tr	151,06	pci in
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base Elastic I	K e Untreated Depth Module Depth	4,19 or Treated) = - - 20	k/cm2 tr cm k/cm2	151,06 eated	in psi in
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base Elastic I Treated Sub Base	K e Untreated Depth Module Depth Module	4,19 or Treated) = - - 20 3500	k/cm2 cm k/cm2 cm	151,06 eated	pci in psi
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base Elastic I Treated Sub Base Elastic I Coefficient of Friction Between	K e Untreated Depth Module Depth Module	4,19 or Treated) = - - 20 3500	k/cm2 cm k/cm2 cm	151,06 eated 7,87 50000,00	in psi in
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base Elastic I Treated Sub Base Elastic I	K e Untreated Depth Module Depth Module	4,19 or Treated) = - - 20 3500	k/cm2 cm k/cm2 cm	151,06 eated 7,87 50000,00	in psi in
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base Elastic I Treated Sub Base Elastic I Coefficient of Friction Between	K e Untreated Depth Module Depth Module	4,19 or Treated) = - - 20 3500	k/cm2 cm k/cm2 cm k/cm2	151,06 eated 7,87 50000,00	in psi in psi
K on Top off Sub Base Sub Base Type (Choisse Untreated Sub Base Elastic I Treated Sub Base Elastic I Coefficient of Friction Between MENTAL DATA	K e Untreated Depth Module Depth Module	4,19 or Treated) = - 20 3500 se and Slab	k/cm2 cm k/cm2 cm k/cm2	7,87 50000,00 0,65	in psi in psi

PORTLAND CEMENT ASSOCIATION METHOD

PCA 1984

AXLE	BY LSF			CON	ICRETE FATIGUE ANAL	ISYS	CON	CRETE EROSION ANALIS	SYS
LOAD	LSF 1,20	TOTAL STRESS	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS	FATIGUE PERCENT	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS	DAMAGE PERCENT
kips		psi			N	%		N	%
	Ruputu	re Module	611,6	Sum of S	Single Fatigue	78,91%		Sum of erosion Fatigue	4,95%
	Trial T	hickness	8,07	Sub Bas	e Subgrade K	151,06	Erosion	Doweled Joints	Yes
	Dowel	ed Joints	Yes	Concre	te Shoulders	No		Concrete Shoulders	No
SINGLE	AXLES			A consistent and a	TO THE REAL PROPERTY.		0.5 5 1 5 0.5		
17,60	19,36	271	46.971	0,444	Unlimited	0,0%	17,00	22.384.263	0,2%
19,80	21,78	303	126.832	0,496	930.421	13,6%	21,52	8.993.513	1,4%
20,90	22,99	319	205.273	0,521	314.437	65,3%	23,98	6.167.678	3,3%

Portland Cement Association Method **PCA 1984**

AXLE	BY LSF			CON	CRETE FATIGUE ANAL	ISYS	CON	CRETE EROSION ANALIS	SYS
LOAD kips	LSF 1,10	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %
	Ruputu	re Module	611,6	Sum of S	Single Fatigue	9,11%		Sum of erosion Fatigue	1,68%
							Erosion		
NDEM	AXLES						0	Unlimited	
	55,66	337	11.018	0,551	120.941	9,1%	49,77	656.148	1,7%
50,60	55,00	001		-,	11-1-17-17-17-17				

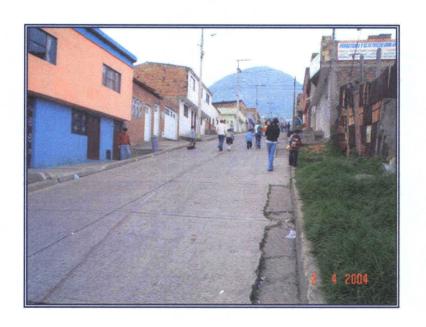
VÍA 04-04

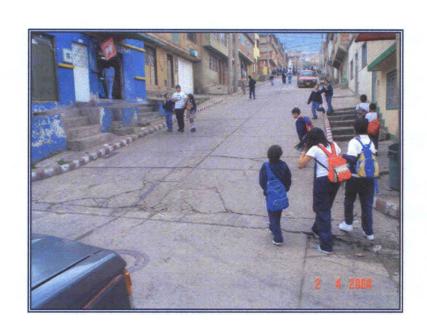
DISEÑO DE PAVIMENTO MÉTODO AASHTO

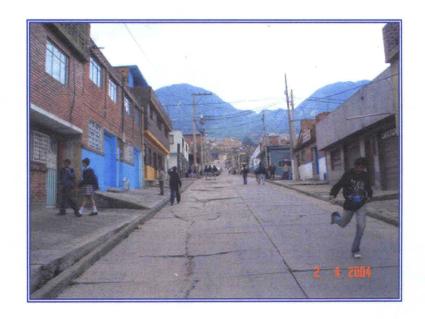
R	90%
Z _R	-1,282
So	0,45
Po	4,2
Pf	2,5 .
SN	4,2
Módulo de la subrasante (psi)	4500
N requerido	1,00E+06
N admisble	1,00E+06

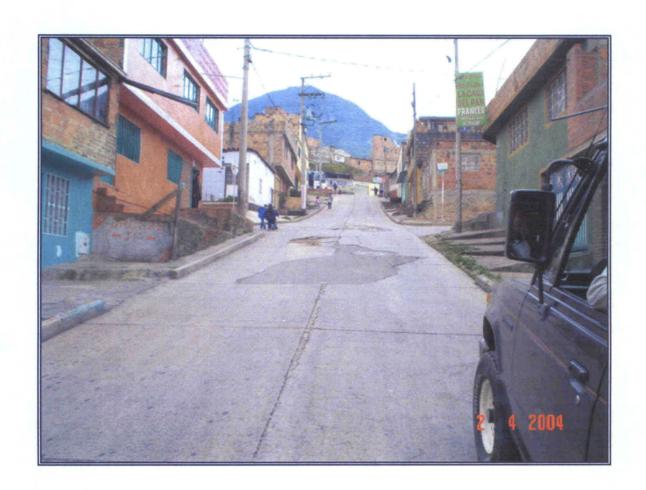
COEFICIENTES DE CAPA					
CONCRETO ASFÁLTICO	0,35				
BASE ESTABILIZADA CON CEMENTO	0,18				
SUBBASE GRANULAR	0,11				

COEFICIENTES DE CAPA					
CONCRETO ASFÁLTICO	0,35				
BASE ESTABILIZADA CON CEMENTO	1,00				
SUBBASE GRANULAR	1,00				


CAPA	ESPESOR (cm)
CONCRETO ASFÁLTICO	13,0
BASE ESTABILIZADA CON CEMENTO	20,0
SUBBASE GRANULAR	25,0
SN	4,29






VIA 4-4

INSTITUTO DE DESARROLLO URBANO I. D. U.

ESTUDIOS Y DISEÑOS PARA LA CONSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES - PROGRAMA DE PAVIMENTOS LOCALES GRUPO 2

CONTRATO No. IDU-259 DE 2003

ESTUDIO GEOTECNICO PARA EL DISEÑO DE PAVIMENTOS (VIA CANADA)

IDU-259-GT-E- 4-5 CANADA (PPL 2004)

NOVIEMBRE 22 DE 2004

	VERSION 0.0	-
	Vigente desde: 22/11/04	
ELABORO: Ing. Francisco Cervantes FECHA: Noviembre 22 de 2.004	REVISO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004	APROBO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004
Franzo Cerst	FIRMA:	FIRMA: What
CARGO: Ing. Especialista	CARGO: Director de Estudios y Diseños	CARGO: Director de Estudios y Diseños

A.C.I. PROYECTOS S.A.

FQ14

CONTROL DE CAMBIOS DE DOCUMENTOS

IDENTIFICACIÓN DEL DOCUMENTO	
ELABORACIÓN MODIFICACIÓN ANULACIÓN	
IDENTIFICACIÓN DE QUIEN SUGIERE EL CAMBIO NOMBRE: JAIRO GARCIA POLO CARGO: DIRECTOR DE INTERVENTORIA	
JUSTIFICACIÓN DEL CAMBIO	SCHOOL STATE OF THE PARTY OF TH
CONTRATO: IDU-259-03	4
DOCUMENTO: IDU-259-GT-E- 4-5 CANADA	
VERSION: 0.0	
ACEPTADO EL CAMBIO? SI NO	
RESUMEN DEL CAMBIO O RAZÓN PARA NO ACEPTAR EL CAMBIO	

FIRMA DIRECTOR DE CALIDAD O ENCARGADO DEL PROYECTO

FIRMA TITULAR DEL CARGO QUE APROBÓ EL PROCEDIMIENTO INICIAL

A.C.I. PROYECTOS S.A.

FQ25-259-3

LISTA DE CHEQUEO DISEÑOS

P	R	O	Υ	Ε	C	T	0	:	

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

ESPECIALIDAD:	ESTUDIOS DE SUELOS
DOCUMENTO:	IDU-259-GT-E -4-5 (ANADA

	REV. No		OBSERVACIONES	REV. No		OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la		NO CUMPLE		CUMPLE	NO CUMPLE	
CRITERIOS DE REVISION:	3 11000314		ione)			
Se realizó el inventario de daños de la vía para los casos						
en que se requiere?	,					
2. Se aplicó correctamente el procedimiento de ensayos de laboratorio?						
Se realizaron la cantidad y tipo de ensayos establecida en la metodología?						
Se identifican los resultados de laboratorio de tal forma que permitan la trazabilidad de los mismos para cada vía?						
RESPONSABLE:	Ing F. Co	ervantes				
FIRMA:	7.0					
FECHA:	221	11/04				
VERIFICACION (Confirmar que los resultados del diser	ño cumple	n con los re	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Existe coincidencia entre el registro de campo de los apiques, los ensayos de laboratorio, los perfiles estratigráficos definitivos y las conclusiones del estudio?						
 Las recomendaciones para la rehabilitación de cada vía corresponde con el inventario de daños y los resultados de los ensayos de laboratorio de suelos. 						
	/	/				
RESPONSABLE:	Ing, M. A	lmanza				
FIRMA:	u	4				
FECHA:	221	1/04				
VALIDACION (Confirmar que cumple con los requisitos	para su	aplicación o	uso)			
CRITERIOS DE VALIDACION						
1. Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:						
FIRMA:						
FECHA:						

Ci	A.C.I.
	PROYECTOS

A.C.I. PROYECTOS S.A.

FQ25-259-9

LISTA DE CHEQUEO DISEÑOS

P	R	O	ΥI	EC	T	0	:	

ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2

HOJA ___ DE ___

ESPECIALIDAD: DISEÑO ESTRUCTURAL DE PAVIMENTO

DOCUMENTO: IDU-259-GT-E -4-5 (ANAOA

	REV. No. 0.0		ı	REV. No.		
		NO CUMPLE	OBSERVACIONES		NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la						
CRITERIOS DE REVISION:		,				
Son adecuados los criterios para la selección de la capacidad de soporte del suelo de cada una de las vías	1					
Se realizaron los diseños para las alternativas de pavimentos previstas en la metodología.			EL ANALISIS ECONOMICO DE LAS ALTERNATIVAS SE MUESTRA EN EL DOCUMENTO DE PRESUPUESTOS			
 Los resultados del número de ejes equivalentes en el período de diseño corresponde con la tipología, uso y tráfico actual de la vía. 						
4. Las alternativas de pavimentos diseñados corresponden a las alternativas de rehabilitación recomendada.						
RESPONSABLE:	Ing.,F, Ce	ervantes				
FIRMA:	FP.					
ECHA:	22/11	1/04).
VERIFICACION (Confirmar que los resultados del dise	ño cumple	n con los re	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Los resultados definitivos del diseño de pavimento para cada alternativa corresponde con los diseños existentes de vías con caracteristicas similares.		38				
Se tomaron los datos correctos de TPD cada 15 minutos, la tasa de proyección y la composición porcentual del tráfico según el estudio de tránsito.		•				
RESPONSABLE:	Ing. M. Al	manza	0			
FIRMA:	u	m				
FECHA:	22/1	11/04				
VALIDACION (Confirmar que cumple con los requisitos	s para su a	aplicación o	uso)			
CRITERIOS DE VALIDACION						
1. Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:						
r'RMA:						
ECHA:						

ESTUDIO GEOTÉCNICO PARA EL DISEÑO DE PAVIMENTO VÍA 4-05 CANADA GUIRA S.O.

TABLA DE CONTENIDO

1. IN	rroducción	1
2. LO	CALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO	3
2.1	Características geométricas	3
2.2	Características climáticas	3
3. IN\	VESTIGACIONES REALIZADAS	5
3.1	Trabajos de campo	
3.2	Ensayos de laboratorio	6
4. CA	RACTERÍSTICAS GEOTÉCNICAS	8
4.1	Geologia ituto de Desarrollo Urbano	8
4.2	Estabilidad de los taludes	8
4.3	Estado actual de las calzadas	8
4.4	Perfiles estratigráficos	8
4.4.1	Relleno granular	9
4.4.2	Subrasante	9
4.5	Capacidad de soporte1	0

5. TR	ÁNSITO 11
6. DIS	SEÑO DE PAVIMENTO12
6.1	Solución de Rehabilitación 12
6.2	Diseño de pavimento 12
6.2.1	Consideraciones generales del método de la PCA 12
6.2.2	Factores de diseño13
6.2.3	Resultados obtenidos pavimento rígido 14
6.2.4	Consideraciones generales del Método AASHTO 15
6.2.5	Resultados obtenidos – Método AASHTO 18
7. ES	PECIFICACIONES
7.1	Concreto hidráulico
7.2	Suelo cemento de Desarrollo Urbano 19
7.3	Capa granular tipo Subbase granular 20
7.4	Capa de concreto asfáltico 20
8. AN	ÁLISIS TÉCNICO DE ALTERNATIVAS21
8.1	Losas apoyadas sobre una capa de suelo cemento 21
8.2	Pavimento flexible22
8.3	Alternativas recomendadas 22

9.	CONCLUSIONES Y	/ RECOMENDACIONES	. 23
----	----------------	-------------------	------

ANEXOS

ANEXO 1: REGISTRO DE LOS APIQUES

ANEXO 2: DETALLE DE ENSAYOS DE LABORATORIO

ANEXO 3: ENSAYOS DE PENETRACIÓN CON CONO

ANEXO 4: MEMORIAS DE CÁLCULO

ANEXO 5: REGISTRO FOTOGRÁFICO

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD Instituto de Desarrollo Urbano

LISTA DE CUADROS

- Cuadro 1.1. Nomenclatura de la vía
- Cuadro 3.1. Profundidad de apiques
- Cuadro 5.1. Número de repeticiones esperadas por cada tipo de eje, por carril

LISTA DE FIGURAS

Figura 2.1. Localización del proyecto

Figura 7.1 a 7.8 Esquemas para la construcción de juntas para

pavimento rígido

Figura 9.1. Esquema de localización de geodrén

LISTA DE FORMATOS TÉCNICOS

FT-259-GT-4-05-1

Localización de apiques y perfiles

estratigráficos

FT-259-GT-4-05-2

Resultados de Investigación Geotécnica

1. INTRODUCCIÓN

En el siguiente informe se presentan y describen cada una de las actividades realizadas tanto en campo como en laboratorio y los resultados y conclusiones de los estudios e investigaciones de suelos efectuados para el diseño del pavimento de unas vías localizadas en el barrio Canadá Guira S.O, en cumplimiento del Contrato IDU 259-2003 "Estudios y Diseños para la construcción y/o evaluación para rehabilitación de accesos a barrios locales – Programa de pavimento locales Grupo-2", suscrito entre el IDU y A. C. I. PROYECTOS S. A.

Las vías se encuentran ubicadas en el sur oriente de la ciudad y se desarrollan en la Localidad de San Cristóbal. En el siguiente cuadro se presenta la nomenclatura de la vía:

Cuadro 1.1. Nomenclatura de la vía

Nomenclatura	De	Hasta
CL 47A S	KR 3D E	KR 4 E

Los estudios geotécnicos para el diseño del pavimento se efectuaron para cumplir con los objetivos que se presentan en forma resumida, a continuación:

 Mediante una evaluación superficial, determinar las condiciones actuales de la estructura existente

- Con la ejecución de investigaciones de campo y ensayos de laboratorio, determinar las condiciones físicas y mecánicas de las diferentes capas que conforman la estructura actual del pavimento y de la subrasante de la vía.
- Definir la solución de rehabilitación más apropiada para el pavimento, teniendo en cuenta las condiciones actuales de la vía, la subrasante, condiciones topográficas, condiciones de drenaje, etc.
- Con base en el tráfico que se espera durante un periodo de diseño de
 20 años, presentar dos alternativas de diseño del pavimento
- Determinar la estructura para los andenes

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD

Instituto de Desarrollo Urbano

2. LOCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO

Tal como se enunció en la introducción, las vías estudiadas se encuentran ubicadas al sur oriente de la ciudad y se desarrollan en el barrio Canadá Guira S.O, perteneciente a la Localidad de San Cristóbal.

En la Figura 2.1 se presenta un plano con la localización del proyecto.

2.1 Características geométricas

La vía estudiada presenta las siguientes características:

TPD actual: mínimo, uso vehicular restringido

Tipo de terreno: ondulado

Número de calzadas: 1 LCALDÍA MAYOR

Pendiente Longitudinal Máxima: 19.95%

Abscisas: K0+000 a K0+42.00 OVILIDAD Instituto de Desarrollo Urbano

2.2 Características climáticas

En general, el clima de la Sabana de Bogotá, está influenciado por el desplazamiento de la zona de Convergencia Intertropical que interviene en el régimen pluviométrico, además, por encontrarse la ciudad de Bogotá en la cordillera oriental, el comportamiento de las lluvias pertenece al tipo de circulación Valle-Montaña.

La temperatura promedio anual es del orden de 14.8° con un máximo promedio de 21.6° y mínimo promedio de 5.3°.

Los meses más lluviosos corresponden a abril y mayo en un primer periodo y septiembre y octubre en el segundo.

3. INVESTIGACIONES REALIZADAS

Para cumplir con los objetivos establecidos, se llevaron a cabo trabajos de campo y ensayos de laboratorio, los cuales se describen a continuación:

3.1Trabajos de campo

Como parte de los trabajos de campo, se efectuó una inspección visual de la calzada para definir las condiciones actuales de la vía y se realizaron apiques localizados en promedio cada 50 m , los cuales se llevaron hasta una profundidad tal que se conociera la subrasante. La localización de los apiques se presenta en el Formato Técnico FT-259-4-05-1, incluido en el siguiente capítulo y su profundidad fue la siguiente:

Cuadro 3.1. Profundidad de apiques

Apiqu e No	Prof. (m)
4-5-1	1.60
4-5-2	2.00

En cada investigación se elaboró el perfil estratigráfico determinando los espesores de las diferentes capas encontradas y registrando el nivel freático si se llegase a encontrar. Por otra parte, se efectuaron ensayos de penetración con el cono de Yoder, el cual consiste en hincar el cono de penetración mediante la caída libre de un martillo de 8.0 Kg de peso,

registrando la cantidad de golpes que se requiere para penetrar cierta profundidad del estrato estudiado. Con los resultados obtenidos, se pudo determinar de manera indirecta el valor del CBR de la subrasante.

Los datos obtenidos de campo fueron valorados y procesados mediante el programa PDC, del paquete INPACO, de la Universidad del Cauca y el Instituto Nacional de Vías.

La correlación empleada para el cálculo del CBR fue la de TRRL, la cual corresponde a:

$$CBR = 302 * (PDC)^{-1.057}$$

Los valores así obtenidos, sirvieron para determinar en forma indirecta la resistencia de la subrasante a lo largo de la vía

El registro de los apiques se incluye en el Anexo 1 y los resultados de los ensayos de penetración con cono en el Anexo 3

3.2 Ensayos de laboratorio

En cada apique se recuperaron muestras representativas de las diferentes capas encontradas y sobre dichas muestras se realizaron ensayos de laboratorio que consistieron en:

- Obtención de la humedad natural
- Granulometría por tamizado, incluyendo lavado sobre tamiz No. 200
- Límites de consistencia (líquido y plástico) sobre material que pasa el tamiz No. 40.

- CBR inalterado en condiciones de humedad natural
- CBR inalterado saturado

El detalle de los ensayos de laboratorio realizados se presenta en el Anexo 2.

4. CARACTERÍSTICAS GEOTÉCNICAS

4.1 Geología

En la Sabana de Bogotá se presentan afloramientos de rocas sedimentarias de origen marino y continental, con edades entre el cretáceo y el terciario y depósitos sedimentarios de edad pleistoceno a reciente. En orden cronológico, de la más antigua a la más reciente las unidades geológicas son: Formación Chipaque, Grupo Guadalupe, Formación Guaduas, Formación Cacho, formación Bogotá, Formación Arenisca La Regadera, Formación Usme, formación Tunjuelo y Formación Sabana.

4.2 Estabilidad de los taludes

El proyecto se desarrolla en una zona no hay cortes y terraplenes por lo cual no se requiere de un estudio de estabilidad.

MOVILIDAD

4.3 Estado actual de las calzadas

De acuerdo con la evaluación superficial efectuada a lo largo de la vía se encuentra una relleno superficial granular.

4.4Perfiles estratigráficos

De las investigaciones realizadas, tanto de campo como de laboratorio, se presenta a continuación las características de cada una de las capas encontradas a lo larga de la vía:

4.4.1 Relleno granular

Esta conformado por grava limosa contaminado con desechos de construcción, de humedad media y densidad media. Se encuentra a lo largo del proyecto y su espesor es de 0.26 m.

4.4.2 Subrasante

Conformada por arcilla limosa y limo arcilloso de humedad media y consistencia media

Descripción: Arcilla limosa y limo arcilloso

% pasa No 4: 100%

% pasa tamiz No 200: 58-94%

Límite líquido: 45-61%

Índice de plasticidad: 9-29%

Humedad natural: 20-56%

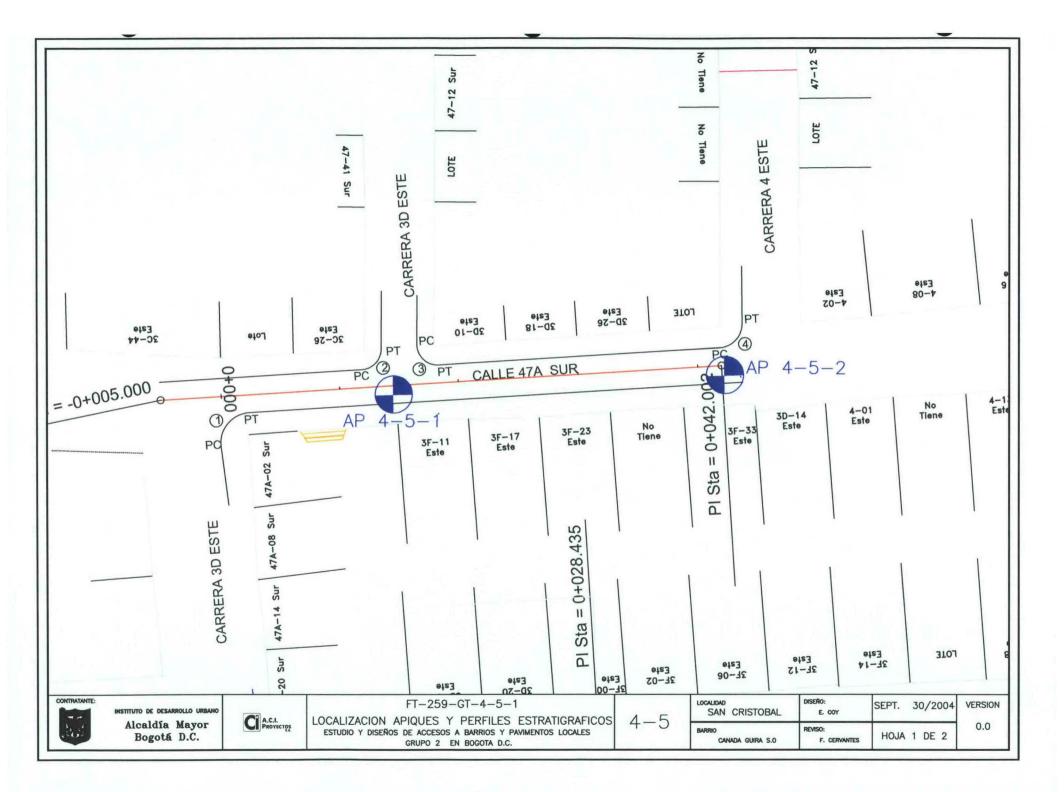
Clasificación U. S. C predominante: CL y MH

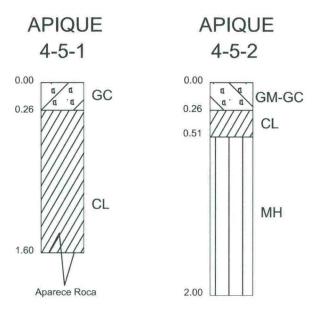
Clasificación AASHTO predominante: A-7-6 y A-7-5

CBR de cono: 4.0-7.8%

CBR inalterado en condiciones de humedad natural: 10.3%

CBR inalterado sumergido: 1.8%


4.5Capacidad de soporte


La capacidad de soporte de la subrasante se definió en términos de CBR, para lo cual se efectuó el ensayo de penetración con cono cuyo resultado que varían entre 4.0 y 7.8%. Adicional a lo anterior el CBR natural fue de 10.3 % y el sumergido de 1.8%. De acuerdo con lo anterior se adopta como CBR de diseño un valor de 5.0%

En el Formato Técnico FT-259-GT-4-05-1 se presentan la localización de los apiques y los perfiles estratigráficos y en el Formato Técnico FT-259-GT-4-05-2, el resumen de los resultados de la investigación geotécnica

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD

Instituto de Desarrollo Urbano

Alcaldía Mayor
Bogotá D.C.

FT-259-GT-4-5-1

LOCALIZACION APIQUES Y PERFILES ESTRATIGRAFICOS ESTUDIO Y DISEÑOS DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2 EN BOGOTA D.C.

SAN CRISTOBAL	DISERIO: E. COY	SEPT.	30/2004	VERSION	
BARRIO CANADA GUIRA S.O	REVISO: F. CERVANTES	HOJA	2 DE 2	0.0	

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 INVESTIGACION GEOTECNICA RESULTADOS PPL -2004

FT- 259 - GT- 4-5 - 2

CONTRA	TO		L	OCALIDAI	D				VIA	DE	SDE		HASTA		BA	BARRIO		HA DE	Septiembre 30 de		
CONTRA									47A S		3 C E		KR 4 E					REALIZACIÓN 2004			
		SA	N CRIST	OBAL	4	4-5	•	CLL	47 B S	KR	BDE		_KR 4A E_			DA GUIRA	TEXE E				
IDU 259 D	E 2003				4-5				4 -5		· · · · · · · · · · · · · · · · · · ·		S.O.	VERSIÓN		VERSIÓN		0.0			
	W 6		MUESTR			GRANULOMETRIA		GRANULOM		DI	ASTICIDAD			CLASIFICACION				CI		BR %	
ABSCISA	APIQUE No.		WIDESTR	(A	%	PASA	TAM	ΙZ	F L.	ASTICIL	AU		AASH	то		IL PDC			INALTERADO		
ABOOICA	141	No.	PROFUN.	Tipo de	No.	No.	No.	No.	11/9/	1 0/9/1	IP(%)	usc	GRUPO	IG	Wn (%)	(Wn-LP)/IP		Wn (%)	SUM	EXP %	
	Y		(m) Capa	4	10 40 200	200	00 [[[]) LP(%) IP(%)	USC	GRUPU	10	VVII (%)	(VVII-LP)/IP	_	VVII (70)	30111	EAP %				
	·	1	0,00-0,26	Granular	64	59	54	34	35	20	15	GC	A-2-6	1	13,8						
K0+025	4-5-1	2	0,26-1,10	Subrasant	100	99	97	76	49	31	18	CL	A-7-5	15	28,4		4,0	10,29	1,84	0,04	
		3	1,10-1,60	Subrasant		100	95	68	24	15	9	CL	A-4	3	20,0	0,56					
		1	0,00-0,26	Granular	38	32	25	11	25	18	7	GM-GC	A-2-4	0	14,4					 	
1/0+040	4-5-2	2	0,26-0,51	Subrasant	99	98	93	58	45	25	20	CL	A-7-6	9	29,8					1	
K0+042	4-5-2	3	0,51-1,14	Subrasant			100	81	60	34	26	МН	A-7-5	24	53,5	0,75	7,8				
	*	4	1,14-2,00	Subrasant			100	94	70	41	29	МН	A-7-5	36	56,0	0,52					
ABORO :		L		E.C					_	L	REVISO				L	F.C		ــــــــــــــــــــــــــــــــــــــ			

5. TRÁNSITO

Para efectos de diseño se adoptaron los siguientes valores:

N=5.0*10⁵ para el diseño de pavimento flexible

Para el diseño en pavimento rígido:

Cuadro 5.1. Número de repeticiones esperadas para cada tipo de eje, por carril

Tipo de eje	Carga por eje (KN)	Repeticiones
	80	131400
Simple	90	0
	95	0
Tándem	200	0
randem	230	0
Trídem	240	0

6. DISEÑO DE PAVIMENTO

Con base en los análisis realizados, incluyendo los resultados de laboratorio y las características de la vía y el tráfico, se presenta a continuación la solución de la rehabilitación y el diseño del pavimento

6.1 Solución de Rehabilitación

 La solución para la rehabilitación de la vía consiste en la construcción de la vía, pues actualmente no cuenta con ningún tipo de estructura

6.2 Diseño de pavimento A MAYOR

Se presentan las dos siguientes alternativas:

- Losas de concreto de módulo de rotura de 4.1 Mpa a los 28 días apoyadas sobre una capa de suelo cemento de resistencia a la compresión a los 7 días de 2.1 MPa y un espesor de 200 mm
- Pavimento de tipo flexible

Para la determinación del espesor de las losas se empleó el método de la PCA, el cual se describe a continuación:

6.2.1 Consideraciones generales del método de la PCA

El método de la PCA tiene en cuenta las siguientes consideraciones:

- Además de involucrar las consideraciones analíticas obtenidas por Westergaard, Pickcett y Ray, tiene en cuenta los resultados y el funcionamiento observados en pruebas experimentales de la AASHTO y modelos a escala como el ensayo de Arlington.
- Este método tiene en cuenta además del grado de transferencia de carga entre losas, el efecto de usar bermas ligadas al pavimento, las cuales reducen los esfuerzos de flexión y las deflexiones producidas por las cargas de los vehículos
- Se tienen en cuenta dos criterios de diseño: A) Fatiga, con el cual se garantiza que los esfuerzos del pavimento producidos por la acción repetida de las cargas se encuentren dentro de límites de seguridad y que se presente la fatiga por agrietamiento. B) Erosión, para limitar el efecto de deflexión en los bordes de las losas, juntas y esquinas y con ello controlar la erosión del suelo de fundación y de los materiales de las bermas. Este criterio es necesario pues fallas como el bombeo, el desnivel de losas y el deterioro de bermas son independientes de la fatiga.

6.2.2 Factores de diseño

Una vez de elegir el tipo de pavimento por construir, la subbase sobre la cual se apoyarán las losas, tipo de transferencia de carga entre losas y la presencia o no de bermas se deben tener en cuenta los siguientes factores:

6.2.2.1 Resistencia del concreto a la flexión

Se tiene en cuenta para el procedimiento de diseño por el criterio de fatiga y con él se controla el agrietamiento del pavimento bajo la acción repetida de

cargas vehiculares. Para este caso se utilizarán losas de concreto con una resistencia a la flexión, medida por ensayos de módulo de rotura a los 28 días de 4.1 MPa

6.2.2.2 Capacidad de soporte de la subrasante

Se mide en términos del módulo de reacción (K), el cual se puede estimar con el CBR, ya que no es indispensable determinar el valor exacto del módulo K, ya que variaciones no muy grandes de él, prácticamente no afectan los espesores de pavimento.

Para un valor de CBR de 5.0% y una base estabilizada con cemento de 15.0 cm de espesor, se tiene un valor de K combinado de:

 $K_{Combinado} = 4.76 \text{ Kg/cm}^2$

6.2.2.3 Tránsito

Se tendrán en cuenta el número y la magnitud de las cargas por eje que se esperan durante el periodo de diseño, los cuales fueron calculados en el capítulo anterior.

6.2.2.4 Factor de seguridad de carga

El método de diseño exige que las cargas reales esperadas se multipliquen por un factor de seguridad de carga. Para este caso se adopta un valor de factor de seguridad de carga (Fsc) de 1.1

6.2.3 Resultados obtenidos pavimento rígido

En el Anexo 4 se presenta la memoria de cálculo para la determinación de los espesores de losa requeridos.

La estructura recomendada será:

Losa de concreto de MR=4.1 Mpa: 200 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

Para el diseño del pavimento flexible se utilizará la metodología desarrollada por la AASHTO

6.2.4 Consideraciones generales del Método AASHTO

Después de muchos años de investigación, la AASHTO, definió una metodología de diseño, en la que ha integrado varios factores o variables entre las cuales se encuentran:

6.2.4.1 Tránsito

Representado por el número de ejes equivalentes de 8.2 toneladas que utilizarán la vía en el carril de diseño durante un período determinado de tiempo.

Instituto de Desarrollo Urbano

Para este caso será:

 $N = 5.00 * 10^5$

6.2.4.2 Confiabilidad

Se refiere al nivel de probabilidad que tiene una estructura de pavimento diseñada para durar a través del período de análisis, tomando en cuenta las posibles variaciones del tráfico previstas así como las del modelo de comportamiento AASHTO, proporcionando un nivel de confiabilidad R que asegure que las secciones del pavimento duren el período para el cual fueron

diseñadas. De acuerdo con el tipo de vía, el valor adoptado de confiabilidad es del 90% con el cual el valor de Desviación Normal Zr será de –1.282.

6.2.4.3 Índice de servicio:

Es la habilidad específica de una sección de pavimento para servir al tráfico. Para efectos del diseño se utiliza el valor de ΔPSI que se define como:

 $\Delta PSI = Po - Pf$

siendo

Po: Índice de serviciabilidad inicial=4.2

Pf: Índice de serviciabilidad final=2.5

6.2.4.4 Caracterización de los Materiales de las Capas de Pavimento:

Las diferentes capas que conforman la estructura del pavimento están caracterizadas por el "Coeficiente de Capa" que corresponde a una medida de la habilidad relativa de una unidad de espesor de un material dado para funcionar como componente estructural del pavimento.

El coeficiente de capa para cada material será:

Cuadro 6.1. Coeficientes de capa empleados en el diseño del pavimento

Tipo de material	Coeficiente de capa (a _i)
Concreto asfáltico tipo MDC-2	0.35
Concreto asfáltico tipo MDC-1	0.35
Capa granular tipo base estabilizada con cemento	0.18
Capa granular tipo subbase	0.11

6.2.4.5 Coeficiente de drenaje

Por las condiciones topográficas del terreno y las características de los materiales que se van a utilizar en las capas, se emplearán los siguientes coeficientes de drenaje:

Cuadro 6.2. Coeficientes de drenaje empleados en el diseño del pavimento

Tipo de material	Coeficiente de drenaje (mi)
Concreto asfáltico tipo MDC-2	1.0
Concreto asfáltico tipo MDC-1	1.0
Capa granular tipo base estabilizada con cemento	1.0
Capa granular tipo subbase	1.0

6.2.4.6 Módulo de la subrasante

De acuerdo con lo descrito en el capítulo 4, el CBR de diseño corresponde 3.50%

El módulo de la subrasante se obtuvo con base en la ecuación de la AASHTO:

ESBR = 1500*CBR (psi), con la cual,

ESBR = 1500*3.5 = 5250 (psi)

6.2.4.7 Número estructural (Sn)

El número estructural requerido para el período de diseño se obtiene con base en la siguiente ecuación:

 $Log(N) = ZR^*So + 9.36*log(SNr + 1) - 0.20 + (\Delta PSI/(4.2 - 1.5)/(0.4 + 1094/(SNr + 1)^{5.19}) + 2.32*log(ESBR) + 0.004/(SNr + 1)^{5.19} + 0.004/$

en la cual,

N: Número de ejes equivalentes

ZR: Desviación normal que depende del nivel de confiabilidad R=-1.282

So: Desviación estándar total=0.45

SN: Número estructural requerido (")

ΔPSI: Po - Pf

ESBR = Módulo de resiliencia de la subrasante

6.2.5 Resultados obtenidos - Método AASHTO

En las memorias de cálculo se incluye el detalle de la determinación de los espesores de cada capa

MOVILIDAD

El número estructural requerido será de:

Sn =3.10"

Instituto de Desarrollo Urbano

El cual se obtiene con la siguiente estructura:

Capa de rodadura en concreto asfáltico tipo MDC-2: 75 mm

Base estabilizada con cemento: 150 mm

Subbase granular: 240 mm

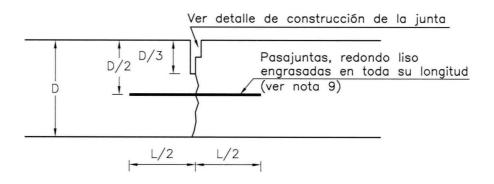
7. ESPECIFICACIONES

Las diferentes capas que conformarán la estructura del pavimento, deberán cumplir con los siguientes requerimientos:

7.1 Concreto hidráulico

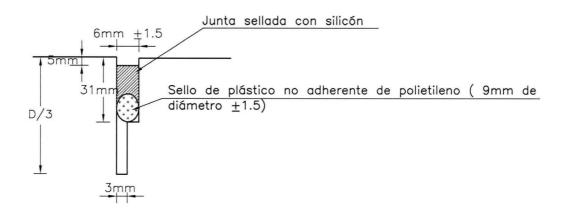
Las losas de concreto hidráulico tendrán un módulo de rotura de 4.1 Mpa.

Los materiales por emplear, como son cemento, agua, agregado fino y agregado grueso, deberán cumplir con los requerimientos establecidos en el artículo 500 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.


DE BOGOTA D.C.

En las figuras 7.1 a 7.8, se presentan los esquemas para la construcción de juntas de contracción transversales, juntas longitudinales y transversales de construcción, juntas de expansión y los criterios que se deben tener en cuenta para la modulación de las losas.

7.2 Suelo cemento


La capa de suelo cemento deberá cumplir con todos los requerimientos establecidos en el artículo 341 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

CORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

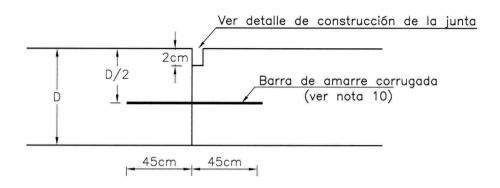
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA

NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

La ranura inicial de 3 mm. para debilitar la sección deberá ser hecha en el momento oportuno para evitar el agrietamiento de la losa, la pérdida de agregados en la junta, o el desportillamiento. El corte adicional para formar el depósito de la junta deberá efectuarse cuando menos 72 horas después del vaciado.



ORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PARAJUNTAS (TIPO 1)

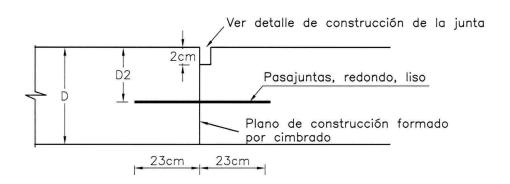
IDU-259-200		
ESTUDIOS Y DISEÑOS PARA I Y/O EVALUACION PARA REF ACCESOS A BARRIOS Y PAVIR GRUPO 2	ABILITACION DE	FECH
GRUPO 2.		

4-5 SIN FIGURA 7.1

CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)

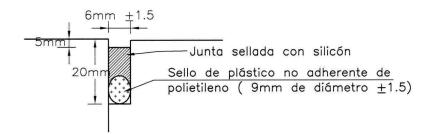
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA

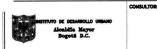


NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.


	CONSULTOR:		PROYECTO:	VIA	ESCALA:	
Alcaldía Mayor Bogotá D.C.	A.C.I. PROVECTOS	CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)	IDL-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIGOS Y PAVIMENTOS LOCALES GRUPO 2.	4-5	sin RE DE 2004	FIGURA 7.2

CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 3)

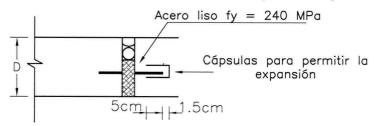

D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA

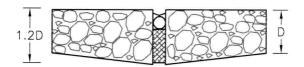
NOTA:

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

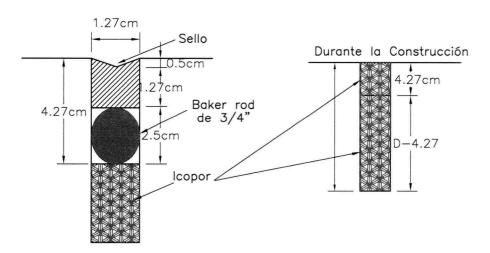
	v.
Ci	A.C.I. PROYECTOS


CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PARAJUNTAS (TIPO 3)

PROTECTO	710
IDU-259-2003	
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE	FEC
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2:	-
	1


VIA	ESCALA
4-5	SIN
FECHA:	
COTU	BRE DE 2004

JUNTA DE EXPANSIÓN TIPO 4

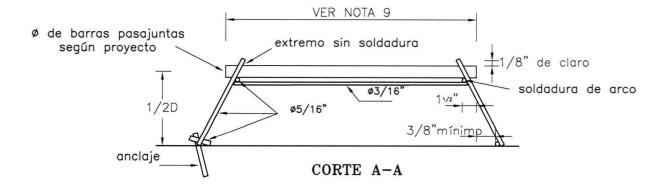

JUNTA DE EXPANSIÓN CON DOVELAS (TIPO 4A)

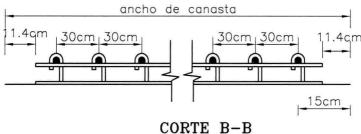
JUNTA DE EXPANSIÓN SIN DOVELAS (TIPO 4B)

DETALLE DE LA JUNTA



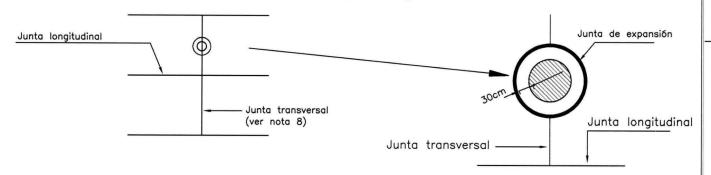
NOTA:

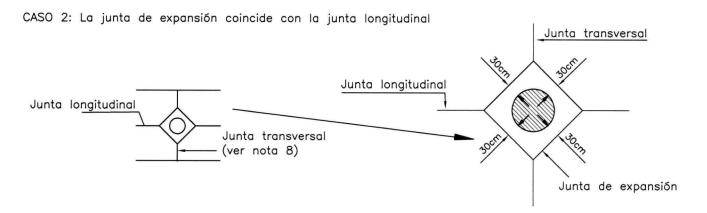

Cuando se tenga la losa conformada, se procederá a retirar el icopor de la parte superior y se construirá la estructura de sello.

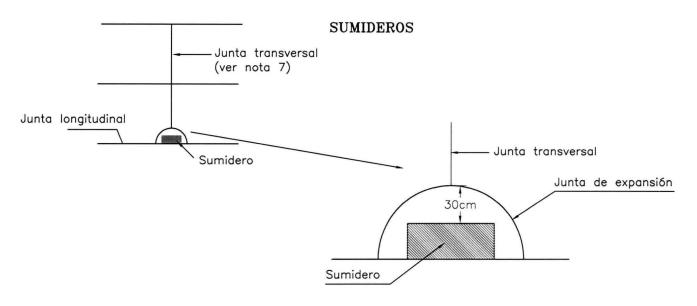

	CONSULTOR:		PROYECTO:	VIA .	ESCALA:	
Alcaldia Mayor Bogotá B.C.	A.C.I. PROYECTOS	JUNTA DE EXPANSIÓN TIPO 4	IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES	4-5	SIN	FIGURA 7.4
			GRUPO 2.	OCTUBE	RE DE 2004	

CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN

VISTA EN PLANTA

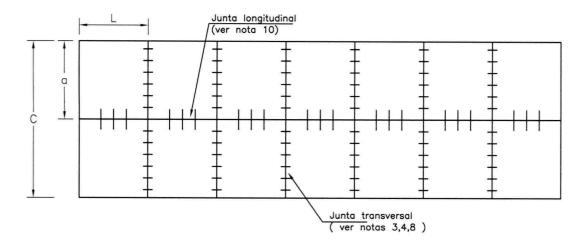





	CONSULTOR:		PROYECTO:	WA	ESCALA:	
INSTITUTO DE DESARROLLO URBANO	Ci A.C.I.		IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-5	SIN	FIGURA 7.5
Alcaldia Mayor Bogotá B.C.	PROYECTOS	CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN		PECHA: OCTUBE	RE DE 2004	FIGURA 7.5

CASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCIÓN

CASO 1: La junta de expansión no concide con la junta longitudinal



CASOS ESPECÍFICOS PROCESOS CONSTRUCTIVO

IDU-259-2003	
STUDIOS Y DISEÑOS PARA LA COSTRUCCIO	AC
Y/O EVALUACION PARA REHABILITACION D	Ε
CESOS A BARRIOS Y PAVIMENTOS LOCAL	ES
GRUPO 2.	

VIA	ESCALA:	
4-5	SIN	
FECHA:		\exists

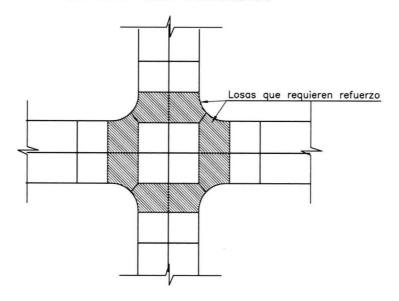
MODULACIÓN DE LOSAS

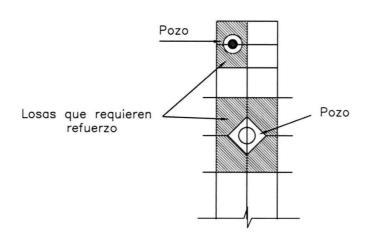
NOTAS GENERALES:

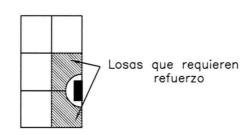
- El ancho de la placa (a) será la mitad de la calzada C/2.
 La relación de esbeltez (L/a) deberá estar entre 1.0 1.4
 Las juntas transversales serán de contracción aserradas con pasajuntas (tipo 1)
- 2. Donde se termine la fundida del día se construirá una junta transversal de
- 3. construcción (tipo 3). Esta junta deberá coincidir siempre con una junta
- transversal de contracción.
 La junta longitudinal será de construcción con pasajuntas (tipo 2).
 Se emplearon juntas de expansión tipo 4A (con dovelas) cuando se presenten
 cambios importantes en la dirección de la vía.
- 6. Para el caso de pozos y sumideros se empleará la junta de expansión tipo 4B. La modulación de las losas deberá ajustarse a la presencia de obras hidráulicas
- 7. como pozos de inspección y sumideros de tal manera que la junta transversal
- 8. coincida con dichas estructuras, manteniendo la relación de esbeltez. La longitud y diámetro de las barras pasajuntas dependerán del espesor de losa según el siguiente cuadro:

ESPESOR DEL PAVIMENTO		RO DEL ADOR	LONGITUD TOTAL	SEPARACION ENTRE
(Cm)	(Cm)	(Pulg)	(Cm)	(Cm)
16-18	2.22	7/8"	35	
19-20	2.54	1*	35	30
21-23	2.54	1*	40	24
24-25	2.54	1*	45	19
26-28	2.54	1*	45	15

- 10. La barra de amarre para la junta longitudinal de construcción será de 90cm de longitud y 1/2" de diámetro de acero de 420 MPa. Se colocarán 3 por losa.
- 11. Algunos de los detalles han sido tomados de los Criterios y Especificaciones para Diseño y Construcción de Pavimentos de Concreto Hidraulico 2003. ASOCRETO.


	STITUTO DE DESARROLLO UNBANO
A. A.	Alcaldia Mayor
0.00	Bogotá D.C.


	17
Ci	A.C.I.
CI	PROYECTOS


IDU-259-2003
ESTUDIOS Y DISENOS PARA LA COSTRUCCION
YIO EVALUACION PARA REHABLITACION DE
ACCESOS A BARRICH PENINENTOS LOCALES
BARRICH PENINENTOS LOCALES

SIN
E 2004

MODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

NOTA:

- 1. Todas las losas asimétricas requieren de refuerzo
- 2. El refuerzo consistirá en varillas $\phi 1/2$ " cada 25cm en las dos direcciones.
- 3. El refuerzo se colocará a una distancia de D/3 medida desde la parte superior de la losa.

PO COM	METTE/TO DE DESARROLLO URBANO
14000-1	Alonidia Mayor
4850	Bogota D.C.

1	-	
	-11	A.C.I.
	411	PROYECTOS
	4	PROYECT

CONSULTOR:

ODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

PROTECTOS	w
IDU-259-2003 ESTUDIOS Y DISENOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	rec
	11

WA	ESCALA:	
4-5	SIN	
FECHA:		F
OCTUE	RE DE 2004	

7.3Capa granular tipo Subbase granular

La capa granular tipo subbase, deberá cumplir con las especificaciones establecidas en las normas IDU

7.4 Capa de concreto asfáltico

Los materiales por emplear en la construcción de la capa de rodadura (MDC-2) deberán cumplir con las Normas de construcción del INV – 1996, artículo 450

8. ANÁLISIS TÉCNICO DE ALTERNATIVAS

Desde el punto de vista técnico, las alternativas presentadas son viables y sus ventajas y desventajas son las siguientes:

8.1Losas apoyadas sobre una capa de suelo cemento

Las ventajas y desventajas que se tienen al implementar esta alternativa son las siguientes:

- Requiere de una profundidad de excavación del orden de 0.35 m
- Si el mezclado se hace en vía, se requiere del empleo de maquinas mezcladoras rotativas que garanticen un buen mezclado con el cemento.
- Si se mezcla en planta, se facilita el proceso constructivo
- El material no es fácilmente erosionable, lo cual es favorable para evitar el fenómeno de bombeo en las losas
- En época de lluvias el rendimiento en el proceso constructivo se ve diezmado
- Las labores para mantenimiento son mínimas y se requieren en un lapso considerable de tiempo, aproximadamente cada 5 años

8.2Pavimento flexible

Sus ventajas y desventajas son las siguientes:

- Requiere de excavaciones del orden de 0.48 m.
- En época de lluvia los rendimientos de construcción disminuyen notablemente
- Su costo inicial es menor que la alternativa en pavimento rígido
- Su mantenimiento requiere de labores de parcheo y sello de fisuras cada 3 años aproximadamente

8.3 Alternativas recomendadas

Desde el punto de vista técnico, cualquiera de las alternativas presentadas podrá implementarse, sin embargo, teniendo en cuenta las características de los pavimentos en el barrio, se recomienda implementar la solución de losas apoyadas sobre una capa de base estabilizada con cemento

9. CONCLUSIONES Y RECOMENDACIONES

De los análisis y descripciones anteriores se deducen las siguientes conclusiones y recomendaciones:

- La vía denominada 4.05, Canadá Guira S.O, presenta actualmente una capa granular tipo afirmado con desechos de construcción
- La subrasante natural encontrada corresponde a arcilla limosa y limo arcilloso de consistencia media
- Por las condiciones actuales de la vía, se recomienda como solución de rehabilitación la construcción de la estructura del pavimento, que por las condiciones topográficas y los pavimentos existentes en la zona, se recomienda que sea en concreto hidráulico.
- De acuerdo con las características de la subrasante y el tráfico esperado en los próximos 20 años, la alternativa para la estructura del pavimento es la siguiente:

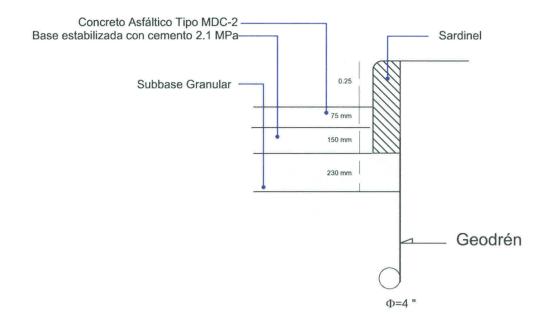
Losa de concreto de MR=4.1 Mpa: 200 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

 Los diseños presentados tienen como premisa que la vía contará con un adecuado sistema de drenaje superficial. Para el drenaje subsuperficial, se deberán colocar, tal como lo muestra la figura 9.1,

filtros tipo geodrén o similar conectados a los sumideros o pozos de aguas lluvias. Estos filtros se deberán colocar a lo largo de la vía en ambos costados.

- Por las características de la subrasante, se recomienda la colocación de un geotextil de separación tipo T1400 o similar que servirá para evitar la contaminación de los granulares
- De acuerdo con las características de la subrasante, se recomienda para los ándenes la siguiente estructura


Adoquín: 60 mm

Arena: 40 mm

Subbase granular: 250 mm

 Las conclusiones y recomendaciones presentadas en este informe, están basadas en investigaciones puntuales realizadas a lo largo de la vía, por lo cual es factible que durante la construcción se presenten condiciones diferentes a las consideradas en el presente estudio. En caso de que esto suceda, se deberá informar a la firma consultora para recomendar las medidas del caso

ESQUEMA DE LOCALIZACION DE GEODREN

Nota:

1. El tubo del geodrén se conectará al alcantarillado pluvial.

Alca	e desarrollo urbano ldía Mayor gotá D.C.	CONTRATISTA:	A.C.I. PROYE	стру
TITULO:	ESQUEMA DE LOCAL	IZACION DE 4-5	GEODREN	
DISEÑO; F. Cervantes	FECHA: OCTUBR	E DE 2004	FIG	GURA N° 9.1
REVISO: F. Cervantes	ESCALA; SIN E	SCALA	DIBUJO E. Coy	ARCHIVO;

REGISTRO DE LOS APIQUES

MOVILIDAD

Instituto de Desarrollo Urbano

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

APIQUE No.

4-5-1

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 47 A S No.3F-11 S

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.	MUESTRA		A	
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES
0,00	1	0.00-0.26	Alterada	0.00-0.26 Relleno de escombros de construcción en matriz de grava arcillosa café de de humedad media.
0,50	····			
	2	0.26-1.10	Inalterada	0.26-1.10 Arcilla limosa café con raíces finas de plasticidad media a alta, humedad baja y consistencia media.
1,00			·	
1,50	3	1.10-1.60	Alterada	1.10-1.60 Arcilla limosa café-habana de plasticidad baja y humedad media. Con presencia de grava de tamaños > 10".
				1.60 FIN DEL APIQUE - RECHAZO POR SOBRE TAMAÑOS
2,00				

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 **CONTRATO IDU -259 DE 2003**

REGISTRO DE PERFORACIÓN

APIQUE No.

4-5-2

REALIZÓ:

E.C.A

FECHA: SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 47 A S No. 3 F-33 E

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.		MUESTRA		DESCRIPCIÓN Y OBSERVACIONES
(m)	No	PROF. (m)	TIPO	DESCRIPCION 1 OBSERVACIONES
0,00		_		0.00-0.26 Relleno de escombros de construcción en matriz de grava limo- arcillosa de humedad media.
0,50	1	0.25-0.51	Alterada	0.26-0.51 Arcilla limosa café con vetas amarillas de plasticidad media a alta y humedad media.
1,00	2	0.51-1.14	Alterada	0.51-1.14 Limo arcilloso amarillo-habano con presencia de raíces de plasticidad alta y humedad media.
1,50	3	1.14-2.00	Alterada	1.14-2.00 Limo arcilloso habano con vetas amarillas y raíces finas de plasticidad alta y humedad baja.
2,00				2.00 FIN DEL APIQUE

DETALLE DE ENSAYOS DE LABORATORIO

MOVILIDAD
Instituto de Desarrollo Urbano

OBRA:

A.C.I. PROYECTOS S.A.

SAN CRISTOBAL

DESCRIPCION:

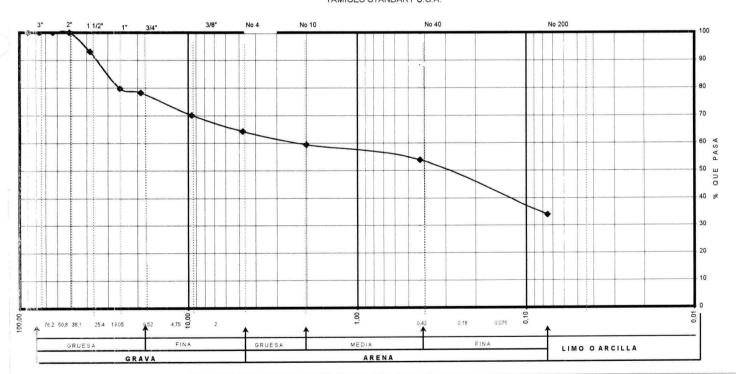
FL-8 ANALISIS GRANULOMETRICO

SECTOR:

C-259-4-05-01-01

30-Abr-04

RECEBO


IDU-259-03

(· ·	1.400,0	1 2	002,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	102,0	6,9	93,1
1*	198,0	13,4	79,8
3/4"	22,0	1,5	78,3
3/8"	122,0	8,2	70,1
4	86,0	5,8	64,3
10	72,0	4,9	59,4
40	82,0	5,5	53,9
200	298,0	20,1	33,8
FONDO	501,0	33,8	

P P:	1 1792	
P		
	2 1588	
P	3 105,0	
%HUM	И 13,8	
ímite Líquido	_	34,80%
ímite Plástico	_	20,36%
ndice Plasticidad		14,4%
specificación: ección 13 (IDU)	Gradacion tipo A	
irava (%)	_	35,7
rena (%)		30,5
inos (%)		33,8
lasificacion U. S. C.	-	6C

FECHA

GRANULOMETRIA POR TAMIZADO TAMICES STANDARTU.S.A.

OBSERVACIONES:

FIRMA:

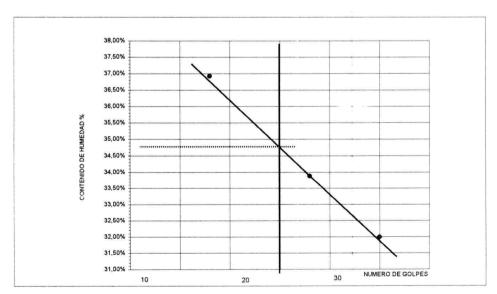
FL+9 LIMITES Y CLASIFICACION C-259-4-05-01-01

OBRA: UBICACIÓN DESCRIPCION:

IDU	J-259-03	SECTOR:	SAN CRISTOBAL		
Calle 47A Sur No. 3F - 11 Sur	MARGEN	IZQUIERDO	FECHA:	30-Abr-04	
RECEBO					

LIMITE LIQUIDO

No. De Golpes	35	28	18
Recipiente No	60	150	141
P1 gr.	33,50	30,63	29,83
P2 gr.	26,85	23,98	22,90
P3 gr.	6,06	4,35	4,13
% Humedad	32,0%	33,9%	36,9%


Límite Liquido %	34,80%
Límite Plástico %	20,36%
Indice de Plasticidad %	14,4%

METITUTO DE DESARROLLO URBARL

LIMITE PLASTICO

Recipiente No	117	124	
P1 gr.	16,23	16,64	
P2 gr.	14,27	14,53	•
P3 gr.	4,6	4,21	•
% Humedad	20,27%	20,45%	

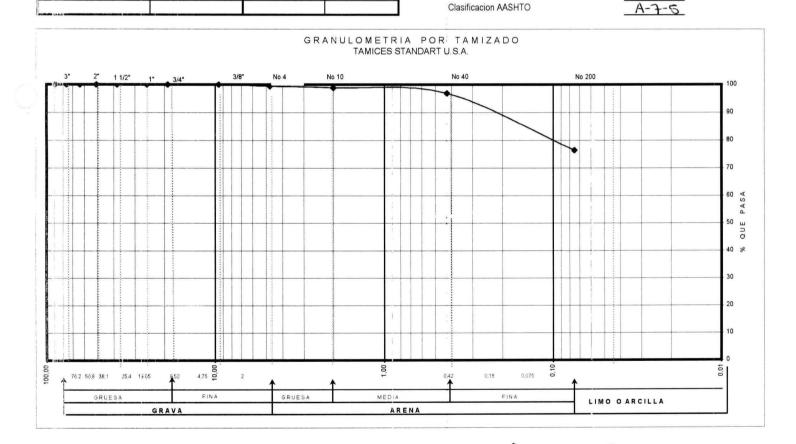
Indice de Grupo
A.A.S.H.T.O.
U.S.C.

OBSERVACION

Firma:

Firma:

FONDO


A.C.I. PROYECTOS S.A.

Clasificacion U.S.C.

FL-8 ANALISIS GRANULOMETRICO C-259-4-05-01-02 OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 30-Abr-04 UBICACIÓN Calle 47A Sur No. 3F - 1 MARGEN IZQUIERDO DESCRIPCION: SUELO NATURAL PROF.: 0,26/1,10 m GRADACION **HUMEDAD NATURAL** P1= 262,2 62,0 P1 400 % Pasa Tamiz Peso retenido % Retenido P2 325,5 31/2" 0,0 100,0 0,0 P3 63,3 3" 0,0 0,0 100,0 %HUM 28,4 2" 1/2" 0.0 0.0 100,0 Límite Líquido 49,15% 2" 0,0 0,0 100,0 31,13% Límite Plástico 0,0 0,0 100,0 1 1/2" Índice Plasticidad 18,0% 1" 0,0 0,0 100,0 3/4" 0,0 0,0 100,0 Especificación: Gradacion tipo A 3/8" 0,0 0.0 100,0 sección 13 (IDU) 4 1,4 0.5 99.5 10 1,5 0,6 98.9 0.5 Grava (%) 40 5.4 2,1 96,8 23,1 Arena (%) 200 76,4 53,7 20,5 76,4 Finos (%)

76,4

200,2

OBSERVACIONES:

FIRMA:

Ingeniero

CL

FL - 9

LIMITES Y CLASIFICACION

C-259-4-05-01-02

OBRA: **UBICACIÓN** DESCRIPCION:

-259-03
MARGE

SECTOR: IZQUIERDO SAN CRISTOBAL

FECHA:

30-Abr-04

LIMITE LIQUIDO

ENVITE ENGOIDO				
No. De Golpes	34	24	14	
Recipiente No	74	48	59	
P1 gr.	34,90	34,41	37,18	
P2 gr.	26,27	25,34	27,44	
P3 gr.	7,99	6,89	8,7	
% Humedad	47,2%	49,2%	52,0%	

Límite Liquido %

49,15%

Límite Plástico %

31,13%


Indice de Plasticidad %

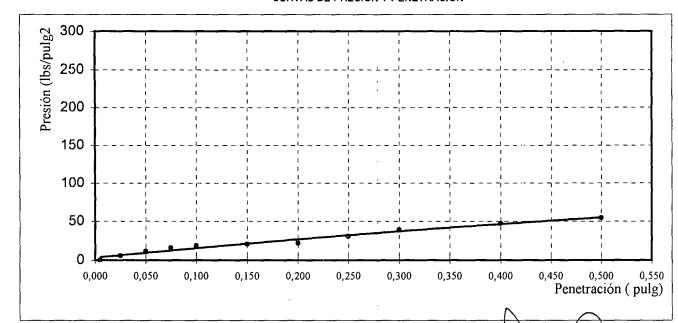
18,0%

LIMITE PLASTICO

Recipiente No	34	41	
P1 gr.	15,1	15,25	
P2 gr.	13,14	13,09	
P3 gr.	6,89	6,10	
% Humedad	31,36%	30,90%	

Indice de Grupo A.A.S.H.T.O. U.S.C.

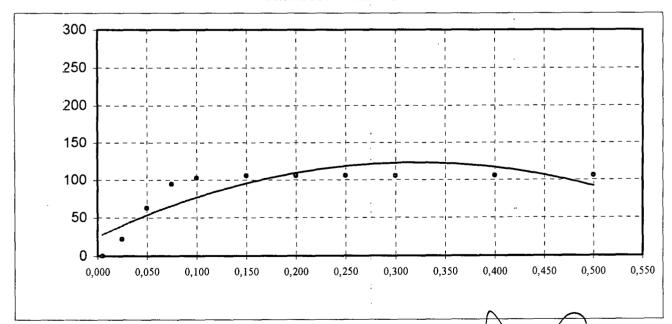
OBSERVACION


Firma:

Firma:

FL - 20		ENSA	YO DE CBR	INALTERAD	0	 C-259	-4-05-01-02
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOB	AL	 FECHA:	30-Abr-04
MARGEN:	IZQUIERDO		PROF. m.	0,26/1,10 m		 _CBR:	1
UBICACIÓN			BARRENO	1		 MUESTRA	2
Molde No.		13 SATUR	ADO			 PESO U	NITARIO
Lectura de expansión inicial		0				 P-muestra gr	
Lectura de expansión 1er día		1				V- muestra c.c	
Lectura de expansión 2er día		1				 % HUM.	-
Lectura de expansión 3er día		2				 DEN,SEC gr/c	c
Lectura de expansión 4er día		2		3]	
Expansión total %		0,04					
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.J.				
0,005	0	0,00	0,00		-		
0,025	8,00	17,64	5,88				
0,050	16,00	35,27	11,76				
0,075	22,00	48,50	16,17				
0,100	25,00	55,12	18,37	,			
0,150	28,00	61,73	20,58				
0,200	30,00	66,14	22,05				
0,250	42,00	92,59	30,86				
0,300	53,00	116,84	38,95				
0,400	64,00	141,10	47,03				
0,500	74,00	163,14	54,38				
Humedad de penetr. %	36,7%						
CBR Correg. a 01	1,84						
CBR Correg. a 02	1,47						

CURVAS DE PRESION Y PENETRACION


Jentenff JOEOTECNØLØGO

INGENIERO

FL - 20		<u>ENSA</u>	YO DE CBR	INALTERAD	0		C-259-4	-05-01-02
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBA	L	FECI	HA:	30-Abr-04
MARGEN:	IZQUIERDO		PROF. m.	0,26/1,10 m		CBR	l:	1
UBICACIÓN			BARRENO	1		MUE	STRA	2
Molde No.		13 SIN SATI	JRAR	T			PESO UN	ITARIO
Lectura de expansión inicial		0				P-mı	uestra gr	146,1
Lectura de expansión 1 er día		0				V- m	uestra c.c	83,06
Lectura de expansión 23r día		0				% H	UM.	28,4
Lectura de expansión 3er día		0				DEN	,SEC gr/cc	1,370
Lectura de expansión 4er día		0						
Expansión total %		0,0						
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.				ľ	
0,005	0	0,00	0,00					
0,025	30,00	66,14	22,05			•		
0,050	85,00	187,39	62,46					
0,075	129,00	284,40	94,80					
0,100	140,00	308,65	102,88					
0,150	144,00	317,47	105,82					
0,200	144,00	317,47	105,82					
0,250	144,00	317,47	105,82					
0,300	144,00	317,47	105,82	;				
0,400	144,00	317,47	105,82					
0,500	144,00	317,47	105,82					
Humedad de penetr. %	28,4%							
CBR Correg. a 01	10,29							
CBR Correg. a 02	7,05						-	

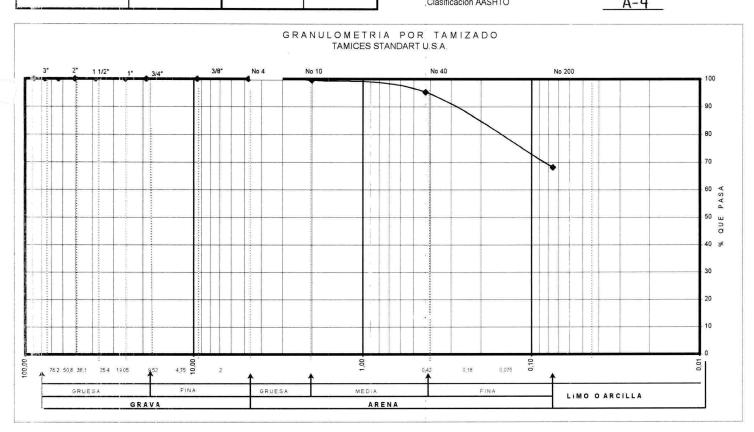
CURVAS DE PRESION Y PENETRACION

INGENIERO

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-05-01-03


 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 30-Abr-04

 UBICACIÓN
 Calle 47A Sur No. 3F - 1
 MARGEN
 IZQUIERDO
 DESCRIPCION:
 SUELO NATURAL

1,10/1,60 m GRADACION

P1=	298,4	P2=	95,0
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	1,3	0,4	99,6
40	12,8	4,3	95,3
200	80,9	27,1	68,2
FONDO	203,4	68,2	

	_		
	HUM	EDAD NATURA	L
	P1	426	
	P2	366,2	
	P3	67,8	
	%HUM	20,0	
Límite Líquido			23,80%
Límite Plástico			15,44%
ndice Plasticidad			8,4%
Especificación: sección 13 (IDU)	Gr	adacion tipo A	
Grava (%)			0,0
Arena (%)			31,8
Finos (%)			68,2
Clasificacion U. S. C.		<u> </u>	CL
Clasificacion AASHTO)		A-4

OBSERVACIONES:

FIRMA:

OBRA:

LIMITES Y CLASIFICACION

C-259-4-05-01-03

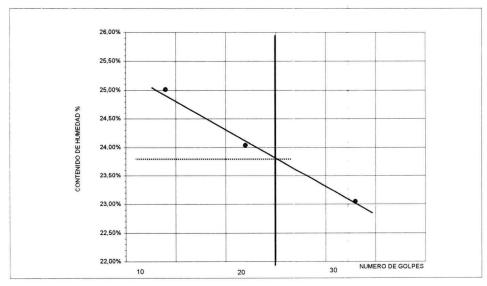
UBICACIÓN DESCRIPCION:

MARGEN

SECTOR: IZQUIERDO SAN CRISTOBAL FECHA:

30-Abr-04

LIMITE LIQUIDO


No. De Golpes	33	22	14	
Recipiente No	61	46	25	
P1 gr.	39,99	33,69	35,7	
P2 gr.	33,71	28,45	30,11	
P3 gr.	6,46	6,65	7,76	
% Humedad	23,0%	24,0%	25,0%	

Límite Liquido % 23,80% Límite Plástico % 15,44% Indice de Plasticidad % 8,4%

LIMITE PLASTICO

Recipiente No	92	97		
P1 gr.	15,97	13,95		
P2 gr.	14,56	12,80		
P3 gr.	5,41	5,37		
% Humedad	15,41%	15,48%	х.	

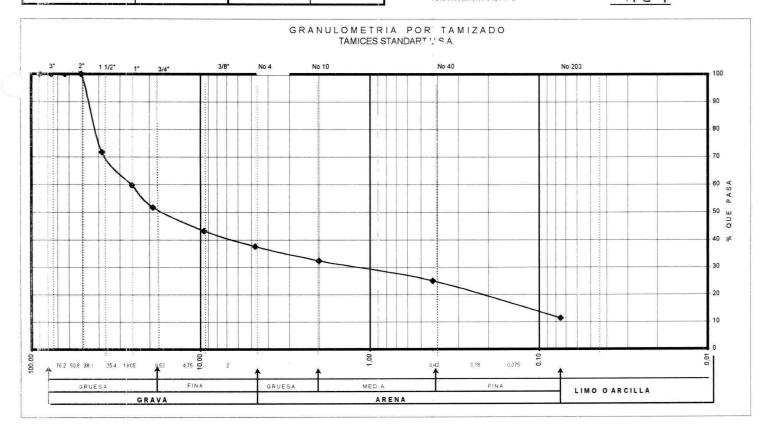
Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO C-259-4-05-02-01



 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 30-Abr-04

 UBICACIÓN PROF.:
 Calle 47A Sur No. 3F - 3 0,00/0,26 m
 MARGEN
 DERECHO
 DESCRIPCION:
 RECEBO

GRADACION

P1=	1.837,9	P2=	1.628,
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	520,0	28,3	71,7
1'	220,0	12,0	59,7
3/4"	146,0	7,9	51,8
3/8"	156,0	8,5	43,3
4	104,0	5,7	37,6
10	98,0	5,3	32,3
40	134,0	7,3	25,0
200	250,0	13,6	11,4
FONDO	209,9	11,4	

	HUME	DAD NATURA	AL
	P1	2218	
	P2	1954	
	P3	116,1	
	%HUM	14,4	
Límite Líquido		<u></u>	24,65%
Límite Plástico		· <u>-</u> -	18,09%
Índice Plasticidad		_	6,6%
Especificación: sección 13 (IDU)	Gra	dacion tipo A	
Grava (%)			62,4
Arena (%)		_	26,2
Finos (%)			11,4
Clasificacion U. S. C.		-	6H-60
Clasificacion AASHTO)	_	A-2-1

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-05-02-01

OBRA: UBICACIÓN DESCRIPCION:

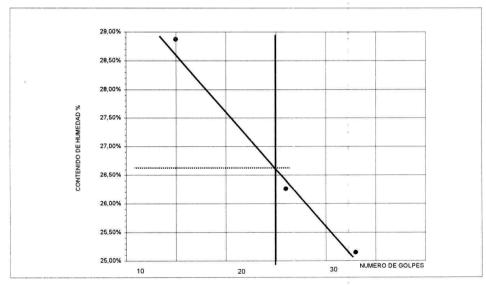
IDL	J-259-03
Calle 47A Sur No. 3F - 33 Sur	MARGEN
RECEBO	

SECTOR: DERECHO SAN CRISTOBAL

FECHA:

30-Abr-04

LIMITE LIQUIDO


EIMITE EIGOIDO			
No. De Golpes	33	26	15
Recipiente No	89	111	49
P1 gr.	42,51	34,11	44,43
P2 gr.	35,07	28,07	36,11
P3 gr.	5,48	5,07	7,29
% Humedad	25,1%	26,3%	28,9%

Límite Liquido %	24,65%
Límite Plástico %	18,09%
Indice de Plasticidad %	6.6%

LIMITE PLASTICO

Recipiente No	154	52	
P1 gr.	19,37	21,47	
P2 gr.	17,07	19,21	Į.
P3 gr.	4,35	6,72	
% Humedad	18,08%	18,09%	

Indice de Grupo
A.A.S.H.T.O.
U.S.C.

OBSERVACION

Firma:

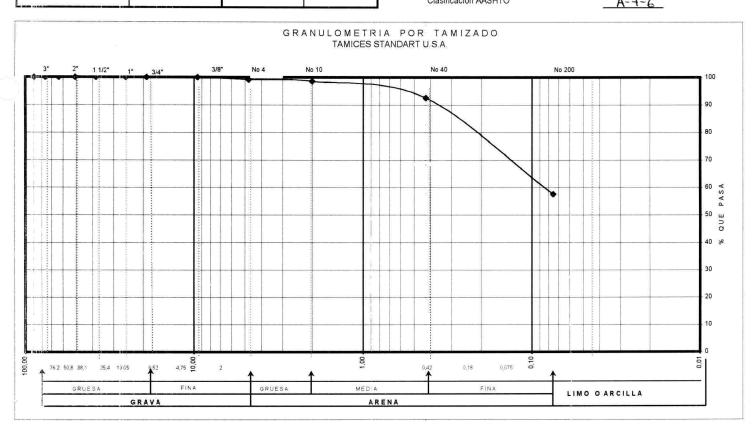
Firma:

PROF.:

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-05-02-02

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 30-Abr-04


 UBICACIÓN
 Calle 47A Sur No. 3F - 3 MARGEN
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

GRADACION

0,26/0,51 m

GRADACION			
P1=	402,4	P2=	170,7
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1*	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	3,5	0,9	99,1
10	2,2	0,5	98,6
40	24,2	6,0	92,6
200	140,8	35,0	57,6
FONDO	231,7	57,6	

н	UMEDAD NATUR	AL
P1	590	
P2	2 470	
P3	67,6	
%HUM	1 29,8	
ímite Líquido	<u>-</u>	45,00%
ímite Plástico	_	25,06%
ndice Plasticidad	_	19,9%
Especificación: sección 13 (IDU) Grava (%)	Gradacion tipo A	0,9
1 10	-	41,6
rena (%) Finos (%)	<i>(</i> =	57,6
Clasificacion U. S. C.	-	CL
Clasificacion AASHTO	_	A-7-

OBSERVACIONES:

FIRMA:

LIMITES Y CLASIFICACION

C-259-4-05-02-02

OBRA: UBICACIÓN DESCRIPCION:

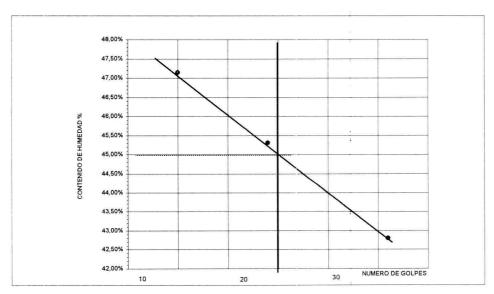
IDU	J-259-03
Calle 47A Sur No. 3F - 33 Sur	MARGEN
SUELO NATURAL	

SECTOR: DERECHO

SAN CRISTOBAL FECHA:

30-Abr-04

LINALTE	LIQUIDO
I IIVII I E	I ICALIII KA


Elimite eligoido				
No. De Golpes	36	24	. 15	
Recipiente No	95	94	87	
P1 gr.	34,97	32,95	36,15	
P2 gr.	26,12	24,36	26,50	
P3 gr.	5,44	5,40	6,03	
% Humedad	42,8%	45,3%	47,1%	

Límite Liquido % 45,00% Límite Plástico % 25,06% Indice de Plasticidad % 19,9%

LIMITE PLASTICO

22.1.2.10.1100			
Recipiente No	33	38	
P1 gr.	17,59	15,06	
P2 gr.	15,51	13,43	i i
P3 gr.	7,34	6,82	
% Humedad	25,46%	24,66%	4

Indice de Grupo A.A.S.H.T.O. U.S.C.

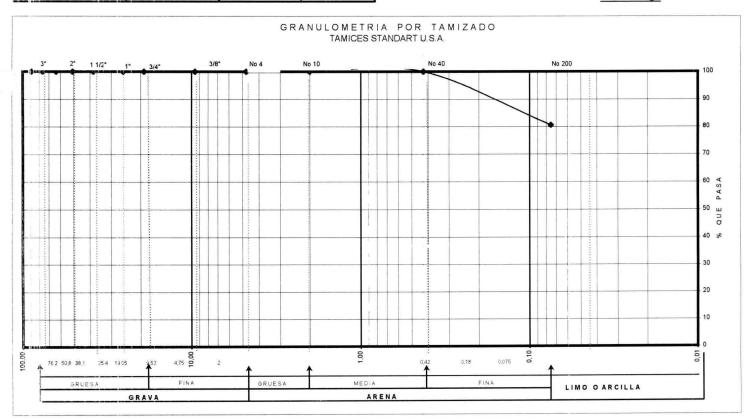
OBSERVACION

Firma:

Firma:

FL-8

A.C.I. PROYECTOS S.A.


OBRA: **FECHA** IDU-259-03 SECTOR: SAN CRISTOBAL 30-Abr-04 UBICACIÓN Calle 47A Sur No. 3F - 3 MARGEN SUELO NATURAL DERECHO DESCRIPCION: PROF.: 0,51/1,14 m GRADACION **HUMEDAD NATURAL** P1 310

ANALISIS GRANULOMETRICO

P1=	179,0	P2=	34,7
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2*	0,0	0,0	100,0
1*	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	34,7	19,4	80,6
FONDO	144,3	80,6	

P2 214,2 P3 35,2 %HUM 53,5 Límite Líquido 60,15% Límite Plástico 33,64% Índice Plasticidad 26,5% Especificación: Gradacion tipo A uccción 13 (IDU) 0,0 (%) Grava 19,4 Arena (%) 80,6 Finos (%) MH Clasificacion U.S.C. Clasificacion AASHTO

C-259-4-05-02-03

OBSERVACIONES:

Geotecnólógo

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

MARGEN

C-259-4-05-02-03

OBRA: UBICACIÓN DESCRIPCION: IDU-259-03

SECTOR: SAN CRISTOBAL

Calle 47A Sur No. 3F - 33 Sur SUELO NATURAL DERECHO

FECHA:

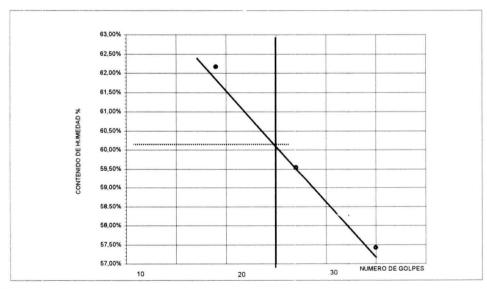
30-Abr-04

LIMITE	LIQUIDO

No. De Golpes	35	27	19
Recipiente No	43	67	108
P1 gr.	35,92	33,08	32,87
P2 gr.	25,4	23,12	22,22
P3 gr.	7,08	6,39	5,09
% Humedad	57,4%	59,5%	62,2%

 Límite Liquido
 %
 60,15%

 Límite Plástico
 %
 33,64%


Indice de Plasticidad %

26,5%

LIMITE PLASTICO

Recipiente No 110 93			
110	93		
18,61	17,02		
15,26	14,26		
5,33	6,03		
33,74%	33,54%		
	18,61 15,26 5,33	18,61 17,02 15,26 14,26 5,33 6,03	

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

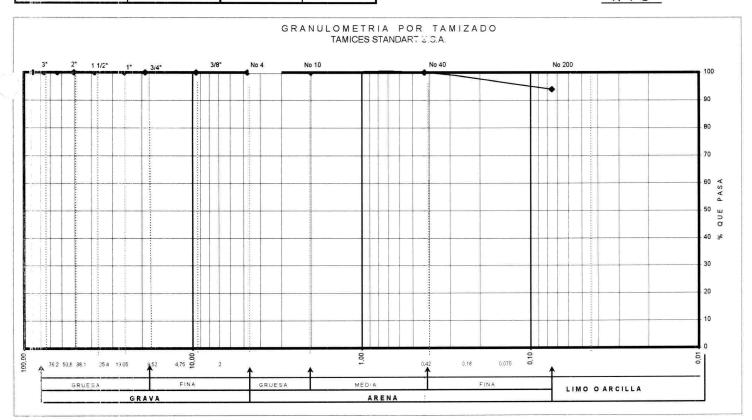
Firma:

Geotechologo

Firma:

FL:8 ANALISIS GRANULOMETRICO C-259-4-05-02-04

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 30-Abr-04


 UBICACIÓN
 Calle 47A Sur No. 3F - 3 MARGEN
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

 PROF.:
 1,14/2,00 m

GRADACION

GRADACION			
P1=	171,4	P2=	10,3
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3"	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	0,0	0,0	100,0
1 1/2*	0,0	0,0	100,0
1"	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	0,0	0,0	100,0
4	0,0	0,0	100,0
10	0,0	0,0	100,0
40	0,0	0,0	100,0
200	10,3	6,0	94,0
FONDO	161,1	94,0	

•			
	HUMED	AD NATURA	AL
	P1	300	
	P2	204	
	P3	32,6	
9	%HUM	56,0	
Límite Líquido		_	70,30%
Límite Plástico		_	41,07%
Índice Plasticidad		_	29,2%
Especificación: sección 13 (IDU)	Grada	acion tipo A	
Grava (%)			0,0
Arena (%)			6,0
Finos (%)			94,0
Clasificacion U. S. C.			MH
Clasificacion AASHTO		_	A-7-5

OBSERVACIONES:

FIRMA:

FL - 9 LIMITES Y CLASIFICACION OBRA: IDU-259-03 SECTOR:

UBICACIÓN DESCRIPCION: Calle 47A Sur No. 3F - 33 Sur MARGEN DERECHO

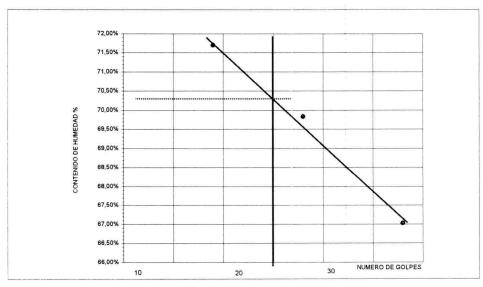
SAN CRISTOBAL

30-Abr-04 FECHA:

C-259-4-05-02-04

SUELO NATURAL

LIMITE LIQUIDO


No. De Golpes 38 28 19				
	30	28	19	
Recipiente No	103	22	86	
P1 gr.	32,76	34,65	33,21	
P2 gr.	21,62	23,47	21,86	
P3 gr.	5,00	7,46	6,03	
% Humedad	67,0%	69,8%	71,7%	

Límite Liquido % 70,30% Límite Plástico % 41,07% Indice de Plasticidad % 29,2%

LIMITE PLASTICO

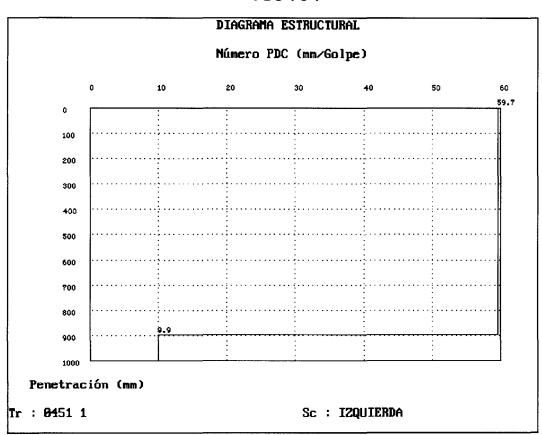
Recipiente No	19	31	
P1 gr.	19,1	16,97	•
P2 gr.	15,69	14,38	
P3 gr.	7,47	8,01	
% Humedad	41,48%	40,66%	

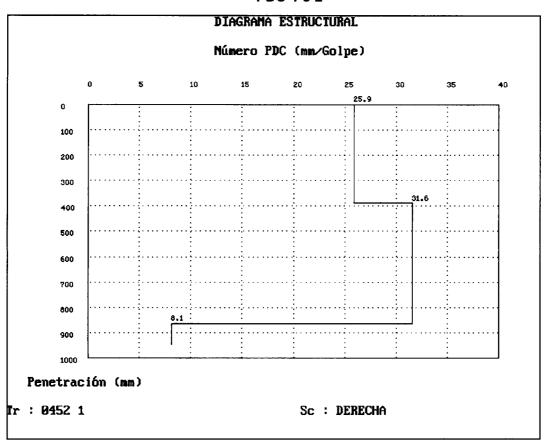
Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:




ENSAYOS DE PENETRACIÓN CON CONO

MOVILIDAD
Instituto de Desarrollo Urbano

PDC 4-5-1

PDC 4-5-2

PORTLAND CEMENT ASSOCIATION METHOD

		Metric Units		English Units	
ETE DATA					
Modulus of Rupture	MR	41.00	kg/cm2	583,16	psi
Thickness	Н	19,30		7,60	in
Modulus of Elasticity	E1	273000		3.900.000	psi
Unit Weight	WT		kg/m3	133	pcf
Coef. of Thermal expansion	CT	3,60E-06		2,00E-06	/°F
Poisson's ratio	u	0,15	, 0	0,15	
Radius of Relative Stiffness	ı	77,13	cm	30,36	in
Coefficient of Variation	CV	0,15	OIII	0,15	
				,	
NT DATA				EXPENSE	
Total Width	Tw	3,50	m	11,48	ft
Numbers of Lanes	NI	1,00		3,28	ft
Width Lane	W	3,66		12,01	ft
Slab Length	SI	3,50		11,48	ft
Concrete Shoulders	Sh	No		yes or no)	
Doweled Joints	Dj	Yes		yes or no)	
Tie Bars	Tb	Yes		yes or no)	
Annual Growth Rate	Too	0	%	0	%
Allitual Glowill Rate	Tca	U	/0	U	/ 0
			Years	20	
Desing Period Drying Shrinkage Coefficient	Dp Lse				
Desing Period Drying Shrinkage Coefficient	Dp Lse	20		20	
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU	Dp Lse JRE	0,0002	Years	0,0002	Years
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R.	Dp Lse JRE CBR	20 0,0002 5,00	Years %	20 0,0002 5,00	Years
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base	Dp Lse JRE CBR K	5,00 4,76	Years % k/cm2	5,00 171,59	Years
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise	Dp Lse JRE CBR K	20 0,0002 5,00	Years % k/cm2	20 0,0002 5,00	Years % pci
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base	Dp Lse JRE CBR K se Untreated Depth	20 0,0002 5,00 4,76 d or Treated) =	Years % k/cm2 cm	5,00 171,59	% pci
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic	Dp Lse JRE CBR K se Untreated Depth Module	20 0,0002 5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2	5,00 171,59	% pci in psi
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base	Dp Lse JRE CBR K se Untreated Depth Module Depth	20 0,0002 5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2 cm	20 0,0002 5,00 171,59 Freated	% pci in psi in
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic	Dp Lse JRE CBR K se Untreated Depth Module Depth Module	20 0,0002 5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2	20 0,0002 5,00 171,59 Treated 5,91 50000,00	% pci in psi
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base	Dp Lse JRE CBR K se Untreated Depth Module Depth Module	20 0,0002 5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2 cm	20 0,0002 5,00 171,59 Freated	% pci in psi in
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Between	Dp Lse JRE CBR K se Untreated Depth Module Depth Module	20 0,0002 5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2 cm	20 0,0002 5,00 171,59 Treated 5,91 50000,00	% pci in psi in
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Between	Dp Lse JRE CBR K se Untreated Depth Module Depth Module	5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2 cm k/cm2	5,00 171,59 Freated 5,91 50000,00 0,65	% pci in psi in psi
Desing Period Drying Shrinkage Coefficient TION PAVEMENT STRUCTU C.B.R. K on Top off Sub Base Sub Base Type (Choise Untreated Sub Base Elastic Treated Sub Base Elastic Coefficient of Friction Between	Dp Lse JRE CBR K se Untreated Depth Module Depth Module	20 0,0002 5,00 4,76 d or Treated) =	% k/cm2 cm k/cm2 cm	20 0,0002 5,00 171,59 Treated 5,91 50000,00	% pci in psi in

PORTLAND CEMENT ASSOCIATION METHOD

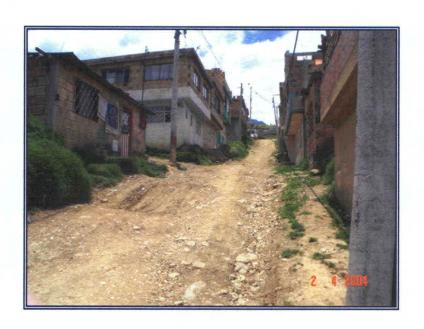
AXLE	BY LSF			CON	CRETE FATIGUE ANAL	ISYS	CONC	RETE EROSION ANALIS	SYS
LOAD kips	LSF #¡REF!	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %
	Ruputui	re Module	583,2	Sum of S	Single Fatigue	0.00%		Sum of erosion Fatigue	3,09%
	Trial T	hickness	7,60	Sub Bas	e Subgrade K	171,59	Erosion	Doweled Joints	Yes
	Dowel	ed Joints	Yes	Concre	te Shoulders	No	September 1	Concrete Shoulders	No
INGLE A	AXLES						1.32		
19,80	#¡REF!		131.400		#¡VALOR!	0,0%	26,81	4.256.235	3,19
		sociation N	lethod	CON	ICDETE FATICIJE ANAL	leve	CONC	PRETE EDOCION ANALIS	
AXLE	BY LSF				ICRETE FATIGUE ANAL			CRETE EROSION ANALIS	SYS
AXLE		TOTAL STRESS psi	EXPECTED	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	CRETE EROSION ANALIS ALLOWABLE REPETITIONS N	
AXLE LOAD	BY LSF LSF #¡REF!	TOTAL STRESS	EXPECTED	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS	FATIGUE PERCENT	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS	DAMAGE PERCENT
AXLE LOAD	BY LSF LSF #¡REF!	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %
AXLE LOAD kips	BY LSF LSF #¡REF!	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS N	DAMAGE PERCENT
AXLE LOAD kips	BY LSF LSF #¡REF!	TOTAL STRESS psi	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS N	FATIGUE PERCENT %	CONCRETE POWER FACTOR Erosion	ALLOWABLE REPETITIONS N	DAMAGE PERCENT %

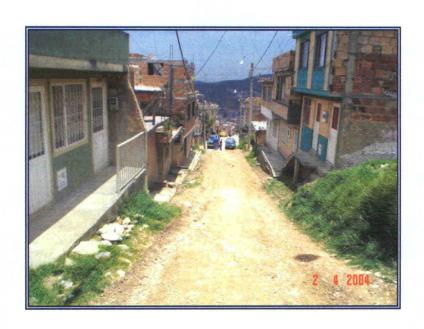
VÍA 32
DISEÑO DE PAVIMENTO MÉTODO AASHTO

R	90%
Z _R	-1,282
So	0,45
Po	4,2
Pf	2,5
SN	3,1
Módulo de la subrasante (psi)	7500
N requerido	5,00E+05
N admisble	5,01E+05

COEFICIENTES DE CAPA	4
CONCRETO ASFÁLTICO	0,35
BASE ESTABILIZADA CON CEMENTO	0,18
SUBBASE GRANULAR	0,11

COEFICIENTES DE CAPA				
CONCRETO ASFÁLTICO	0,35			
BASE ESTABILIZADA CON CEMENTO	1,00			
SUBBASE GRANULAR	1,00			


CAPA	ESPESOR (cm)
CONCRETO ASFÁLTICO	7,5
BASE ESTABILIZADA CON CEMENTO	15,0
SUBBASE GRANULAR	24,0
SN	3,1



VIA 4-5

INSTITUTO DE DESARROLLO URBANO I. D. U.

ESTUDIOS Y DISEÑOS PARA LA CONSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES - PROGRAMA DE PAVIMENTOS LOCALES GRUPO 2

CONTRATO No. IDU-259 DE 2003

ESTUDIO GEOTECNICO PARA EL DISEÑO DE PAVIMENTOS (VIA CANADA)

IDU-259-GT-E- 4-6 CANADA (PPL 2004)

NOVIEMBRE 22 DE 2004

	VERSION 0.0 Vigente desde: 22/11/04	
ELABORO: Ing. Francisco Cervantes FECHA: Noviembre 22 de 2.004	REVISO: Ing. Manuel Almanza Mesa FECHA: Noviembre 22 de 2.004	APROBO: Ing. Manuel Almanza Mesa FECHA: Noviembre 227de 2.004
Franco Cart	FIRMA:	FIRMA: Celled
CARGO: Ing. Especialista	CARGO: Director de Estudios y Diseños	CARGO: Director de Estudios y Diseños

A.C.I. PROYECTOS S.A.

FQ14

CONTROL DE CAMBIOS DE DOCUMENTOS

IDENTIFICACIÓN DEL	DOCUMENTO
ELABORACIÓN	ANULACIÓN SUGIERE EL CAMBIO
JUSTIFICACIÓN D	EL CAMBIO
CONTRATO: IDU-259-03	
DOCUMENTO: IDU-259-GT-E- 4-6 CAPROA VERSION: 0.0	
ACEPTADO EL CAMBIO?	SI NO
RESUMEN DEL CAMBIO O RAZÓN PA	ARA NO ACEPTAR EL CAMBIO
FIRMA DIRECTOR DE CALIDAD O ENCARGADO DEL PROYECTO	FIRMA TITULAR DEL CARGO QUE APROBÓ EL PROCEDIMIENTO INICIAL

A.C.I. PROYECTOS S.A.

FQ25-259-3

LISTA DE CHEQUEO DISEÑOS

	PROYECTO:	ESTUDIO Y DISEÑO DE VIAS PAVIMENTOS LOCALES GRUPO 2
--	-----------	---

HOJA ___ DE ___

ESPECIALIDAD: ESTUDIOS DE SUELOS DOCUMENTO: IDU-259-GT-E - C - 6 CANADA

	REV. No.	0.0		REV. No		
	CUMPLE	NO CUMPLE	OBSERVACIONES		NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la	s necesia	lades del Cli	iente)			
CRITERIOS DE REVISION:						
Se realizó el inventario de daños de la vía para los casos en que se requiere?	1					
2. Se aplicó correctamente el procedimiento de ensayos de laboratorio?						
Se realizaron la cantidad y tipo de ensayos establecida en la metodología?	/					
Se identifican los resultados de laboratorio de tal forma que permitan la trazabilidad de los mismos para cada vía?	/					
RESPONSABLE:	Ing, F. Ce	ervantes				
FIRMA:	40	•.				
FECHA:	2211	11/04				
VERIFICACION (Confirmar que los resultados del dise	ño cumple	en con los re	equisitos de entrada)			
CRITERIOS DE VERIFICACION:						
Existe coincidencia entre el registro de campo de los apiques, los ensayos de laboratorio, los perfiles estratigráficos definitivos y las conclusiones del estudio?						
 Las recomendaciones para la rehabilitación de cada vía corresponde con el inventario de daños y los resultados de los ensayos de laboratorio de suelos. 						
		,				
RESPONSABLE:	Ing M. A	lmanza	,			
FIRMA:	W	1				
FECHA:	22	11/04				
VALIDACION (Confirmar que cumple con los requisitos	s para su	aplicación o	uso)			
CRITERIOS DE VALIDACION						
Aprobación de Interventoría						
2. Aceptación del Cliente						
, -						
RESPONSABLE:						
FIRMA:						
FECHA.						

Ci	A.C.I. PROYECTOS
	PROTECTOS

A.C.I. PROYECTOS S.A.

FQ25-259-9

LISTA DE CHEQUEO DISEÑOS

HOJA ___ DE ___

PROYECTO:	ESTUDIO Y DISEÑ	DE VIAS PAVIMENTOS	LOCALES GRUPO 2

ESPECIALIDAD: DISEÑO ESTRUCTURAL DE PAVIMENTO

DOCUMENTO: IDU-259-GT-E -4-6 CON POOR

	REV. No. 0.0		REV. No.			
*		NO CUMPLE	OBSERVACIONES		NO CUMPLE	OBSERVACIONES
REVISION (Confirmar su conveniencia para satisfacer la						
CRITERIOS DE REVISION:	2					
Son adecuados los criterios para la selección de la capacidad de soporte del suelo de cada una de las vías						
Se realizaron los diseños para las alternativas de pavimentos previstas en la metodología.			EL ANALISIS ECONOMICO DE LAS ALTERNATIVAS SE MUESTRA EN EL DOCUMENTO DE PRESUPUESTOS			
 Los resultados del número de ejes equivalentes en el período de diseño corresponde con la tipología, uso y tráfico actual de la vía. 		ě				
4. Las alternativas de pavimentos diseñados corresponden a las alternativas de rehabilitación recomendada.						
RESPONSABLE:	Ing. F. Ce	ervantes				
FIRMA:	Til.					
FECHA:	72/1	1/04				
VERIFICACION (Confirmar que los resultados del dise	-		equisitos de entrada)	No.		
CRITERIOS DE VERIFICACION:						
Los resultados definitivos del diseño de pavimento para cada alternativa corresponde con los diseños existentes de vías con caracteristicas similares.						
 Se tomaron los datos correctos de TPD cada 15 minutos, la tasa de proyección y la composición porcentual del tráfico según el estudio de tránsito. 						
RESPONSABLE:	Ing. M. A	lmanza				
FIRMA:	lus	luf				
FECHA:	2211	1/04				
VALIDACION (Confirmar que cumple con los requisito	s para su	aplicación d	uso)			
CRITERIOS DE VALIDACION			•			
1. Aprobación de Interventoría						
2. Aceptación del Cliente						
RESPONSABLE:						
FIRMA:						
FECHA:						

ESTUDIO GEOTÉCNICO PARA EL DISEÑO DE PAVIMENTO VÍA 4-06 CANADA GUIRA S.O.

TABLA DE CONTENIDO

1.	INTRODUCCIÓN	1
2.	LOCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO	3
2.1	Características geométricas	3
2.2	Características climáticas	3
3.	INVESTIGACIONES REALIZADAS	5
3.1	Trabajos de campo	5
3.2	Ensayos de laboratorio	6
4.	CARACTERÍSTICAS GEOTÉCNICAS	8
4.1	Geologia ituto de Desarrollo Urbano	8
4.2	Estabilidad de los taludes	8
4.3	Estado actual de las calzadas	8
4.4	Perfiles estratigráficos	8
4.	.4.1 Relleno granular	9
4.	.4.2 Subrasante	9
4.5	Capacidad de soporte	10

5. TR	RÁNSITO	. 11
6. DI	SEÑO DE PAVIMENTO	. 12
6.1	Solución de Rehabilitación	. 12
6.2	Diseño de pavimento	. 12
6.2.1	Consideraciones generales del método de la PCA	. 12
6.2.2	2 Factores de diseño	. 13
6.2.3	Resultados obtenidos pavimento rígido	. 14
6.2.4	Consideraciones generales del Método AASHTO	. 15
6.2.5	Resultados obtenidos – Método AASHTO	. 18
7. ES	PECIFICACIONES	. 19
7.1	Concreto hidráulico	. 19
7.2	Suelo cemento de Desarrollo Urbano	. 19
7.3	Capa granular tipo Subbase granular	. 20
7.4	Capa de concreto asfáltico	. 20
8. AN	IÁLISIS TÉCNICO DE ALTERNATIVAS	. 21
8.1	Losas apoyadas sobre una capa de suelo cemento	. 21
8.2	Pavimento flexible	. 22
8.3	Alternativas recomendadas	. 22

9.	CONCLUSIONES Y RECOMENDACIONES	3
ANE	xos	
ANE	XO 1: REGISTRO DE LOS APIQUES	
ANE	XO 2: DETALLE DE ENSAYOS DE LABORATORIO	
ANE	XO 3: ENSAYOS DE PENETRACIÓN CON CONO	
ANE	XO 4: MEMORIAS DE CÁLCULO	
ΔNE	XO 5: REGISTRO FOTOGRÁFICO	

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD Instituto de Desarrollo Urbano

LISTA DE CUADROS

- Cuadro 1.1. Nomenclatura de la vía
- Cuadro 3.1. Profundidad de apiques
- Cuadro 5.1. Número de repeticiones esperadas por cada tipo de eje, por carril

LISTA DE FIGURAS

Figura 2.1. Localización del proyecto

Figura 7.1 a 7.8 Esquemas para la construcción de juntas para

pavimento rígido

Figura 9.1. Esquema de localización de geodrén

LISTA DE FORMATOS TÉCNICOS

FT-259-GT-4-06-1

Localización de apiques y perfiles

estratigráficos

FT-259-GT-4-06-2

Resultados de Investigación Geotécnica

1. INTRODUCCIÓN

En el siguiente informe se presentan y describen cada una de las actividades realizadas tanto en campo como en laboratorio y los resultados y conclusiones de los estudios e investigaciones de suelos efectuados para el diseño del pavimento de unas vías localizadas en el barrio Canadá Guira S.O, en cumplimiento del Contrato IDU 259-2003 "Estudios y Diseños para la construcción y/o evaluación para rehabilitación de accesos a barrios locales – Programa de pavimento locales Grupo-2", suscrito entre el IDU y A. C. I. PROYECTOS S. A.

Las vías se encuentran ubicadas en el sur oriente de la ciudad y se desarrollan en la Localidad de San Cristóbal. En el siguiente cuadro se presenta la nomenclatura de la vía:

Cuadro 1.1. Nomenclatura de la vía

Nomenclatura	De	Hasta
CL 47B S	KR 3D E	KR 4A E

Los estudios geotécnicos para el diseño del pavimento se efectuaron para cumplir con los objetivos que se presentan en forma resumida, a continuación:

 Mediante una evaluación superficial, determinar las condiciones actuales de la estructura existente

- Con la ejecución de investigaciones de campo y ensayos de laboratorio, determinar las condiciones físicas y mecánicas de las diferentes capas que conforman la estructura actual del pavimento y de la subrasante de la vía.
- Definir la solución de rehabilitación más apropiada para el pavimento, teniendo en cuenta las condiciones actuales de la vía, la subrasante, condiciones topográficas, condiciones de drenaje, etc.
- Con base en el tráfico que se espera durante un periodo de diseño de
 20 años, presentar dos alternativas de diseño del pavimento
- Determinar la estructura para los andenes

ALCALDÍA MAYOR DE BOGOTÁ D.C. MOVILIDAD

Instituto de Desarrollo Urbano

2. LOCALIZACIÓN Y DESCRIPCIÓN DEL PROYECTO

Tal como se enunció en la introducción, las vías estudiadas se encuentran ubicadas al sur oriente de la ciudad y se desarrollan en el barrio Canadá Guira S.O, perteneciente a la Localidad de San Cristóbal.

En la Figura 2.1 se presenta un plano con la localización del proyecto.

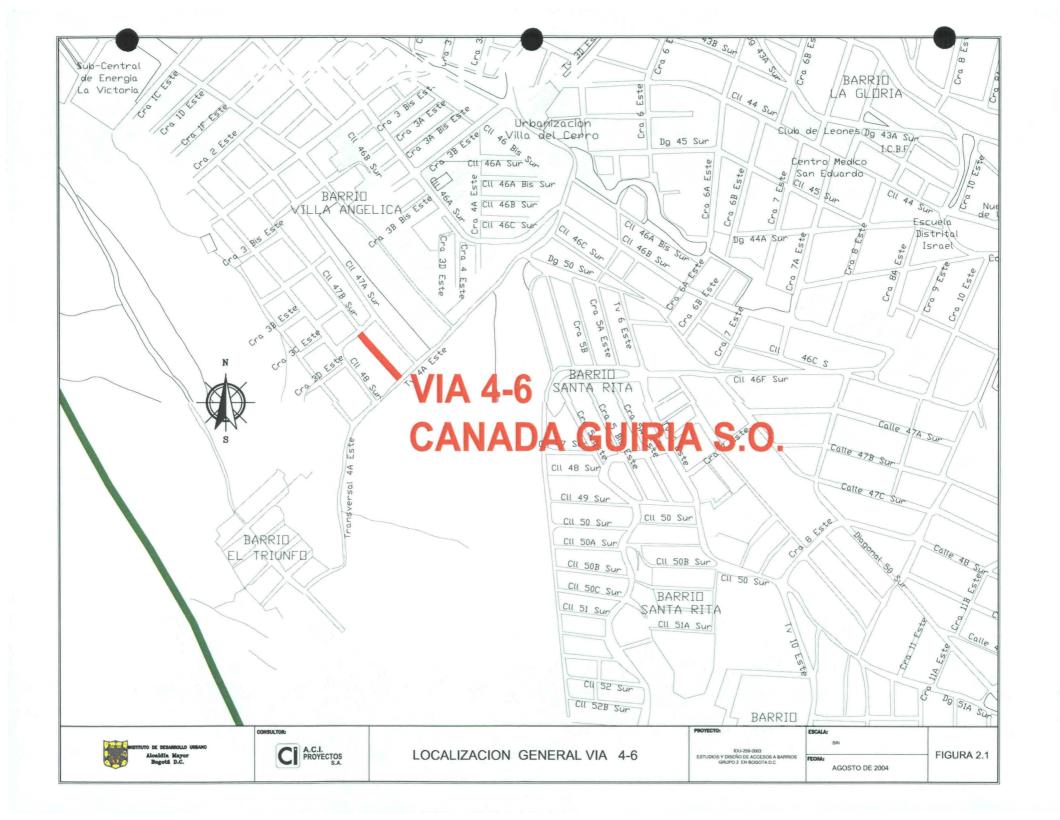
2.1 Características geométricas

La vía estudiada presenta las siguientes características:

TPD actual: mínimo, uso vehicular restringido

Tipo de terreno: ondulado

Número de calzadas: 1 LCALDÍA MAYOR


Pendiente Longitudinal Máxima: 19.70%

Abscisas: K0+000 a K0+082.55 OVILIDAD Instituto de Desarrollo Urbano

2.2 Características climáticas

En general, el clima de la Sabana de Bogotá, está influenciado por el desplazamiento de la zona de Convergencia Intertropical que interviene en el régimen pluviométrico, además, por encontrarse la ciudad de Bogotá en la cordillera oriental, el comportamiento de las lluvias pertenece al tipo de circulación Valle-Montaña.

La temperatura promedio anual es del orden de 14.8° con un máximo promedio de 21.6° y mínimo promedio de 5.3°.

Los meses más lluviosos corresponden a abril y mayo en un primer periodo y septiembre y octubre en el segundo.

3. INVESTIGACIONES REALIZADAS

Para cumplir con los objetivos establecidos, se llevaron a cabo trabajos de campo y ensayos de laboratorio, los cuales se describen a continuación:

3.1Trabajos de campo

Como parte de los trabajos de campo, se efectuó una inspección visual de la calzada para definir las condiciones actuales de la vía y se realizaron apiques localizados en promedio cada 50 m , los cuales se llevaron hasta una profundidad tal que se conociera la subrasante. La localización de los apiques se presenta en el Formato Técnico FT-259-4-06-1, incluido en el siguiente capítulo y su profundidad fue la siguiente:

Cuadro 3.1. Profundidad de apiques

Apique	Prof.
No	(m)
4-6-1	2.00
4-6-2	2.00
4-6-3	2.00

En cada investigación se elaboró el perfil estratigráfico determinando los espesores de las diferentes capas encontradas y registrando el nivel freático si se llegase a encontrar. Por otra parte, se efectuaron ensayos de penetración con el cono de Yoder, el cual consiste en hincar el cono de penetración mediante la caída libre de un martillo de 8.0 Kg de peso,

registrando la cantidad de golpes que se requiere para penetrar cierta profundidad del estrato estudiado. Con los resultados obtenidos, se pudo determinar de manera indirecta el valor del CBR de la subrasante.

Los datos obtenidos de campo fueron valorados y procesados mediante el programa PDC, del paquete INPACO, de la Universidad del Cauca y el Instituto Nacional de Vías.

La correlación empleada para el cálculo del CBR fue la de TRRL, la cual corresponde a:

$$CBR = 302 * (PDC)^{-1.057}$$

Los valores así obtenidos, sirvieron para determinar en forma indirecta la resistencia de la subrasante a lo largo de la vía

El registro de los apiques se incluye en el Anexo 1 y los resultados de los ensayos de penetración con cono en el Anexo 3

3.2 Ensayos de laboratorio

En cada apique se recuperaron muestras representativas de las diferentes capas encontradas y sobre dichas muestras se realizaron ensayos de laboratorio que consistieron en:

- Obtención de la humedad natural
- Granulometría por tamizado, incluyendo lavado sobre tamiz No. 200
- Límites de consistencia (líquido y plástico) sobre material que pasa el tamiz No. 40.

- CBR inalterado en condiciones de humedad natural
- CBR inalterado saturado

El detalle de los ensayos de laboratorio realizados se presenta en el Anexo 2.

4. CARACTERÍSTICAS GEOTÉCNICAS

4.1 Geología

En la Sabana de Bogotá se presentan afloramientos de rocas sedimentarias de origen marino y continental, con edades entre el cretáceo y el terciario y depósitos sedimentarios de edad pleistoceno a reciente. En orden cronológico, de la más antigua a la más reciente las unidades geológicas son: Formación Chipaque, Grupo Guadalupe, Formación Guaduas, Formación Cacho, formación Bogotá, Formación Arenisca La Regadera, Formación Usme, formación Tunjuelo y Formación Sabana.

4.2 Estabilidad de los taludes

El proyecto se desarrolla en una zona no hay cortes y terraplenes por lo cual no se requiere de un estudio de estabilidad.

MOVILIDAD

4.3 Estado actual de las calzadas

De acuerdo con la evaluación superficial efectuada a lo largo de la vía se encuentra una relleno superficial granular.

4.4Perfiles estratigráficos

De las investigaciones realizadas, tanto de campo como de laboratorio, se presenta a continuación las características de cada una de las capas encontradas a lo larga de la vía:

4.4.1 Relleno granular

Esta conformado por grava limosa contaminado con desechos de construcción, de humedad media y densidad media. Se encuentra a lo largo del proyecto y su espesor variable entre 0.30 y 0.35 m.

4.4.2 Subrasante

Conformada por arcilla limosa de humedad media y consistencia media

Descripción: Arcilla limosa

% pasa No 4: 97-100%

% pasa tamiz No 200: 68-99%

Límite líquido: 22-61%

Índice de plasticidad: 8-33%

Humedad natural: 31-36%

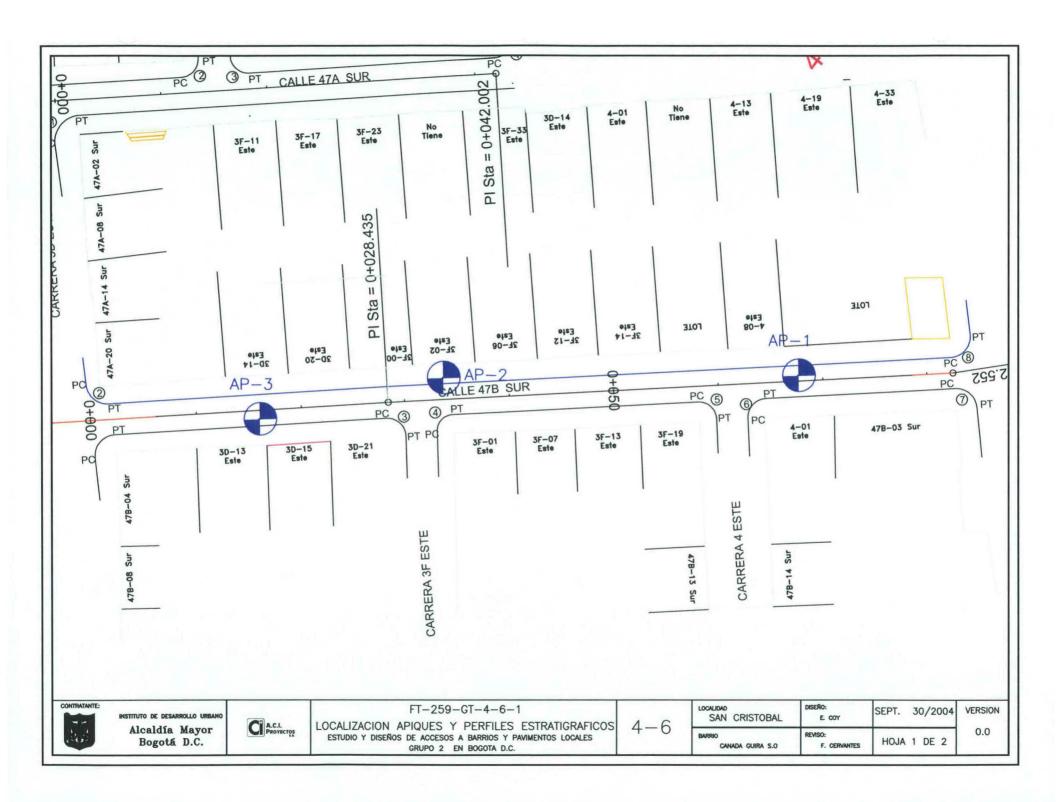
Clasificación U. S. C predominante: CL 17010 Urbano

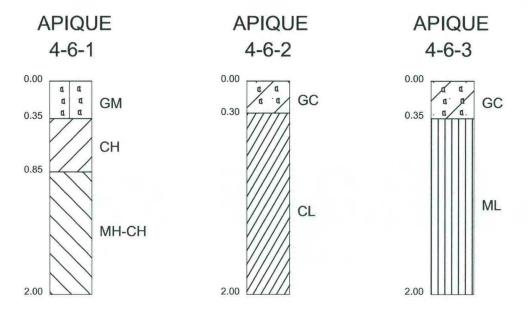
Clasificación AASHTO predominante: A-7-6 y A-7-5

CBR de cono: 4.5-6.3%

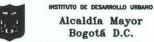
CBR inalterado en condiciones de humedad natural: 6.8%

CBR inalterado sumergido: 5.3%




4.5Capacidad de soporte

La capacidad de soporte de la subrasante se definió en términos de CBR, para lo cual se efectuó el ensayo de penetración con cono cuyo resultado que varían entre 4.5 y 6.3%. Adicional a lo anterior el CBR natural fue de 6.8 % y el sumergido de 5.3%. De acuerdo con lo anterior se adopta como CBR de diseño un valor de 5.0%


En el Formato Técnico FT-259-GT-4-06-1 se presentan la localización de los apiques y los perfiles estratigráficos y en el Formato Técnico FT-259-GT-4-06-2, el resumen de los resultados de la investigación geotécnica

SAN CRISTOBAL	DISERO: E. COY	SEPT. 30/2004		
BARRIO CANADA GUIRA S.O	REVISO: F. CERVANTES	HOJA 2 DE 2		

VERSION

0.0

0,00-0,30

Granular

55 50

42 | 19

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 INVESTIGACION GEOTECNICA RESULTADOS PPL -2004 FT- 259 - GT- 4-6 - 2

LOCALIDAD VIA DESDE HASTA BARRIO **FECHA DE** CONTRATO: Septiembre 30 de REALIZACIÓN 2004 CLL 47 B S KR 3 D E KR 4A E CANADA GUIRA 4-6 SAN CRISTOBAL IDU 259 DE 2003 S.O. VERSIÓN 0.0 CBR % CLASIFICACION APIQUE No. **GRANULOMETRIA PLASTICIDAD MUESTRA** IL % PASA TAMIZ **AASHTO** PDC INALTERADO **ABSCISA** PROFUN. Tipo de No. No. No. No. SUM LL(%) LP(%) IP(%) USC **GRUPO** Wn (%) (Wn-LP)/IP Wn (%) EXP % No. IG 10 40 200 (m) Capa 0,00-0,35 Granular 52 40 31 17 20 16 GM A-1-b 0 11,2 33 6,83 K0+068 4-6-1 2 0,35-0,85 Subrasant 100 99 89 61 CH A-7-6 33 31,5 4,5 5,29 8,0 3 0,85-2,00 Subrasant 100 99 62 32 30 MH-CH A-7-5 37 33,5 0,05

4-6-2 2 0,30-1,28 97 96 95 73 K0+032 Subrasant 22 14 8 CL A-4 3 35,9 5,1 1,28-2,00 Subrasant 98 96 94 73 42 23 19 CL A-7-6 13 31,5 0,45 0,00-0,35 59 30 11 GC A-2-6 0 16,5 Granular 53 47 30 19 K0+016 4-6-3 2 0,35-2,00 Subrasant 100 99 97 68 38 25 13 ML A-6 8 37,3 0,95 6,3 REVISO : E.C.A F.C.V ELABORO:

14

8

GC

A-2-4

0

16,7

22

5. TRÁNSITO

Para efectos de diseño se adoptaron los siguientes valores:

N=5.0*10⁵ para el diseño de pavimento flexible

Para el diseño en pavimento rígido:

Cuadro 5.1. Número de repeticiones esperadas para cada tipo de eje, por carril

Tipo de eje	Carga por eje (KN)	Repeticiones
	80	131400
Simple	90	0
	95	0
Tándem	200	0
	230	0
Trídem	240	0

6. DISEÑO DE PAVIMENTO

Con base en los análisis realizados, incluyendo los resultados de laboratorio y las características de la vía y el tráfico, se presenta a continuación la solución de la rehabilitación y el diseño del pavimento

6.1 Solución de Rehabilitación

 La solución para la rehabilitación de la vía consiste en la construcción de la vía, pues actualmente no cuenta con ningún tipo de estructura

6.2 Diseño de pavimento A MAYOR

Se presentan las dos siguientes alternativas:

- Losas de concreto de módulo de rotura de 4.1 Mpa a los 28 días apoyadas sobre una capa de suelo cemento de resistencia a la compresión a los 7 días de 2.1 MPa y un espesor de 150 mm
- Pavimento de tipo flexible

Para la determinación del espesor de las losas se empleó el método de la PCA, el cual se describe a continuación:

6.2.1 Consideraciones generales del método de la PCA

El método de la PCA tiene en cuenta las siguientes consideraciones:

- Además de involucrar las consideraciones analíticas obtenidas por Westergaard, Pickcett y Ray, tiene en cuenta los resultados y el funcionamiento observados en pruebas experimentales de la AASHTO y modelos a escala como el ensayo de Arlington.
- Este método tiene en cuenta además del grado de transferencia de carga entre losas, el efecto de usar bermas ligadas al pavimento, las cuales reducen los esfuerzos de flexión y las deflexiones producidas por las cargas de los vehículos
- Se tienen en cuenta dos criterios de diseño: A) Fatiga, con el cual se garantiza que los esfuerzos del pavimento producidos por la acción repetida de las cargas se encuentren dentro de límites de seguridad y que se presente la fatiga por agrietamiento. B) Erosión, para limitar el efecto de deflexión en los bordes de las losas, juntas y esquinas y con ello controlar la erosión del suelo de fundación y de los materiales de las bermas. Este criterio es necesario pues fallas como el bombeo, el desnivel de losas y el deterioro de bermas son independientes de la fatiga.

6.2.2 Factores de diseño

Una vez de elegir el tipo de pavimento por construir, la subbase sobre la cual se apoyarán las losas, tipo de transferencia de carga entre losas y la presencia o no de bermas se deben tener en cuenta los siguientes factores:

6.2.2.1 Resistencia del concreto a la flexión

Se tiene en cuenta para el procedimiento de diseño por el criterio de fatiga y con él se controla el agrietamiento del pavimento bajo la acción repetida de

cargas vehiculares. Para este caso se utilizarán losas de concreto con una resistencia a la flexión, medida por ensayos de módulo de rotura a los 28 días de 4.1 MPa

6.2.2.2 Capacidad de soporte de la subrasante

Se mide en términos del módulo de reacción (K), el cual se puede estimar con el CBR, ya que no es indispensable determinar el valor exacto del módulo K, ya que variaciones no muy grandes de él, prácticamente no afectan los espesores de pavimento.

Para un valor de CBR de 5.0% y una base estabilizada con cemento de 15.0 cm de espesor, se tiene un valor de K combinado de:

 $K_{Combinado} = 4.76 \text{ Kg/cm}^2$

6.2.2.3 Tránsito

Se tendrán en cuenta el número y la magnitud de las cargas por eje que se esperan durante el periodo de diseño, los cuales fueron calculados en el capítulo anterior.

CALDÍA MAYOR

6.2.2.4 Factor de seguridad de carga

El método de diseño exige que las cargas reales esperadas se multipliquen por un factor de seguridad de carga. Para este caso se adopta un valor de factor de seguridad de carga (Fsc) de 1.1

6.2.3 Resultados obtenidos pavimento rígido

En el Anexo 4 se presenta la memoria de cálculo para la determinación de los espesores de losa requeridos.

La estructura recomendada será:

Losa de concreto de MR=4.1 Mpa: 200 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

Para el diseño del pavimento flexible se utilizará la metodología desarrollada por la AASHTO

6.2.4 Consideraciones generales del Método AASHTO

Después de muchos años de investigación, la AASHTO, definió una metodología de diseño, en la que ha integrado varios factores o variables entre las cuales se encuentran:

6.2.4.1 Tránsito

Representado por el número de ejes equivalentes de 8.2 toneladas que utilizarán la vía en el carril de diseño durante un período determinado de tiempo.

ALCALDÍA MAYOR

Para este caso será:

 $N = 5.00 * 10^5$

6.2.4.2 Confiabilidad

Se refiere al nivel de probabilidad que tiene una estructura de pavimento diseñada para durar a través del período de análisis, tomando en cuenta las posibles variaciones del tráfico previstas así como las del modelo de comportamiento AASHTO, proporcionando un nivel de confiabilidad R que asegure que las secciones del pavimento duren el período para el cual fueron

diseñadas. De acuerdo con el tipo de vía, el valor adoptado de confiabilidad es del 90% con el cual el valor de Desviación Normal Zr será de –1.282.

6.2.4.3 Índice de servicio:

Es la habilidad específica de una sección de pavimento para servir al tráfico. Para efectos del diseño se utiliza el valor de ΔPSI que se define como:

 $\Delta PSI = Po - Pf$

siendo

Po: Índice de serviciabilidad inicial=4.2

Pf: Índice de serviciabilidad final=2.5

6.2.4.4 Caracterización de los Materiales de las Capas de Pavimento:

Las diferentes capas que conforman la estructura del pavimento están caracterizadas por el "Coeficiente de Capa" que corresponde a una medida de la habilidad relativa de una unidad de espesor de un material dado para funcionar como componente estructural del pavimento.

El coeficiente de capa para cada material será:

Cuadro 6.1. Coeficientes de capa empleados en el diseño del pavimento

Tipo de material	Coeficiente de capa (a _i)
Concreto asfáltico tipo MDC-2	0.35
Concreto asfáltico tipo MDC-1	0.35
Capa granular tipo base estabilizada con cemento	0.18
Capa granular tipo subbase	0.11

6.2.4.5 Coeficiente de drenaje

Por las condiciones topográficas del terreno y las características de los materiales que se van a utilizar en las capas, se emplearán los siguientes coeficientes de drenaje:

Cuadro 6.2. Coeficientes de drenaje empleados en el diseño del pavimento

Tipo de material	Coeficiente de drenaje (mi)
Concreto asfáltico tipo MDC-2	1.0
Concreto asfáltico tipo MDC-1	1.0
Capa granular tipo base estabilizada con cemento	1.0
Capa granular tipo subbase	1.0

6.2.4.6 Módulo de la subrasante

De acuerdo con lo descrito en el capítulo 4, el CBR de diseño corresponde 5.00%

El módulo de la subrasante se obtuvo con base en la ecuación de la AASHTO:

ESBR = 1500*CBR (psi), con la cual,

ESBR = 1500*5.0 = 7500 (psi)

6.2.4.7 Número estructural (Sn)

El número estructural requerido para el período de diseño se obtiene con base en la siguiente ecuación:

 $Log(N) = ZR*So+9.36*log(SNr+1)-0.20+(\Delta PSI/(4.2-1.5)/(0.4+1094/(SNr+1)^{5.19}) +2.32*log(ESBR)^{18.07} +2.32*log(ESBR)^{18.0$

en la cual,

N: Número de ejes equivalentes

ZR: Desviación normal que depende del nivel de confiabilidad R=-1.282

So: Desviación estándar total=0.45

SN: Número estructural requerido (")

ΔPSI: Po - Pf

ESBR = Módulo de resiliencia de la subrasante

6.2.5 Resultados obtenidos - Método AASHTO

En las memorias de cálculo se incluye el detalle de la determinación de los espesores de cada capa

El número estructural requerido será de:

Sn = 3.10" MOVILIDAD
Instituto de Desarrollo Urbano

El cual se obtiene con la siguiente estructura:

Capa de rodadura en concreto asfáltico tipo MDC-2: 75 mm

Base estabilizada con cemento: 150 mm

Subbase granular: 240 mm

7. ESPECIFICACIONES

Las diferentes capas que conformarán la estructura del pavimento, deberán cumplir con los siguientes requerimientos:

7.1 Concreto hidráulico

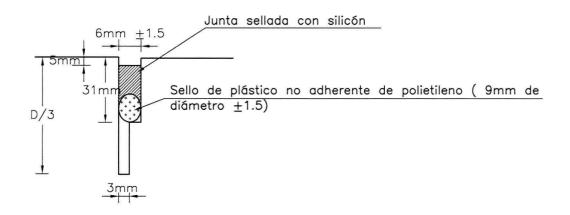
Las losas de concreto hidráulico tendrán un módulo de rotura de 4.1 Mpa.

Los materiales por emplear, como son cemento, agua, agregado fino y agregado grueso, deberán cumplir con los requerimientos establecidos en el artículo 500 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.


DE BOGOTA D.C.

En las figuras 7.1 a 7.8, se presentan los esquemas para la construcción de juntas de contracción transversales, juntas longitudinales y transversales de construcción, juntas de expansión y los criterios que se deben tener en cuenta para la modulación de las losas.

7.2 Suelo cemento


La capa de suelo cemento deberá cumplir con todos los requerimientos establecidos en el artículo 341 de las Especificaciones Generales de Construcción de Carreteras del Instituto Nacional de Vías.

CORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON PASAJUNTAS (TIPO 1)

D= ESPESOR DE LA LOSA DE PAVIMENTO

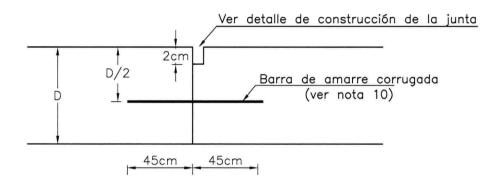
DETALLE DE CONSTRUCCIÓN DE LA JUNTA

NOTA:

vaciado.

La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.

La ranura inicial de 3 mm. para debilitar la sección deberá ser hecha en el momento oportuno para evitar el agrietamiento de la losa, la pérdida de agregados en la junta, o el desportillamiento. El corte adicional para formar el depósito de la junta deberá efectuarse cuando menos 72 horas después del


ORTE Y SELLADO DE JUNTA DE CONTRACCIÓN TRANSVERSAL CON

ı		200
ı	IDU-259-2003	
ı	ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE	FE
ı	ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	-
		1

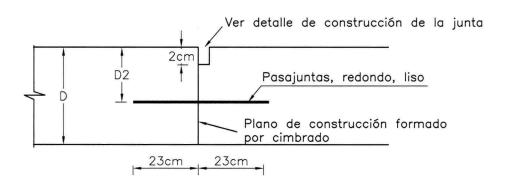
VIA 4-6	ESCALA: SIN	
FECHA: OCTUB	RE DE 2004	

FIGURA 7.1

CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 2)

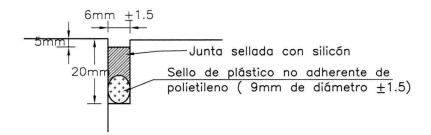
D= ESPESOR DE LA LOSA DE PAVIMENTO

DETALLE DE CONSTRUCCIÓN DE LA JUNTA



NOTA:

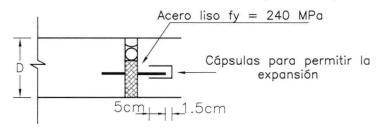
La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.


ų)		CONSULTOR:		PROYECTO:		ESCALA:	
۱	METITUTO DE DESARBOLLO URBANO	A.C.I.		IDU-259-2003	4-6	SIN	FIGURA 7.0
	Alcaldia Mayor Bogota B.C.	PROYECTOS	CORTE Y SELLADO DE JUNTA LONGITUDINAL DE CONSTRUCCIÓN CON PARAJUNTAS (TIPO 2)	ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN YIO EVALUACIÓN PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	PECHA: OCTUBR	E DE 2004	FIGURA 7.2

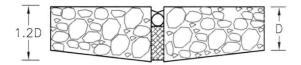
CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN CON PASAJUNTAS (TIPO 3)

D= ESPESOR DE LA LOSA DE PAVIMENTO

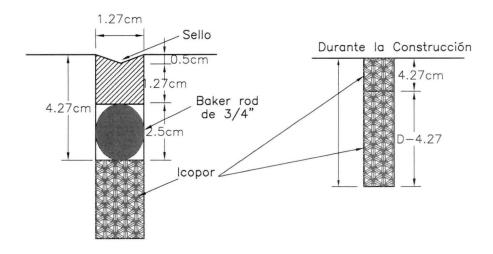
DETALLE DE CONSTRUCCIÓN DE LA JUNTA


NOTA:

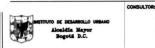
La relación ancho/profundidad del sellador de silicón deberá ser como mínimo 1:1 y como máximo 2:1.


f	CONSULTOR:		PROYECTO:	VIA	ESCALA:	
MISTITUTO DE DESARROLLO URBANO	A.C.I.	CORTE Y SELLADO DE JUNTA TRANSVERSAL DE CONSTRUCCIÓN	IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-6	SIN	FIGURA 7.3
Alcaldia Mayor Bogotá B.C.	PROYECTOS	CON PASAJUNTAS (TIPO 3)		OCTUBI	RE DE 2004	FIGURA 7.3

JUNTA DE EXPANSIÓN TIPO 4


JUNTA DE EXPANSIÓN CON DOVELAS (TIPO 4A)

JUNTA DE EXPANSIÓN SIN DOVELAS (TIPO 4B)

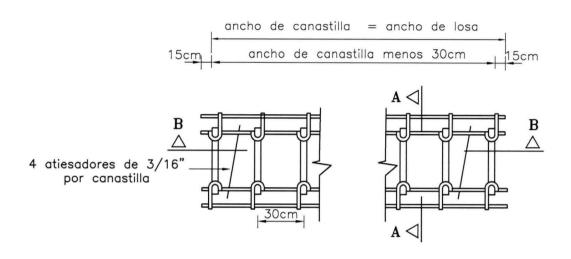

DETALLE DE LA JUNTA

NOTA:

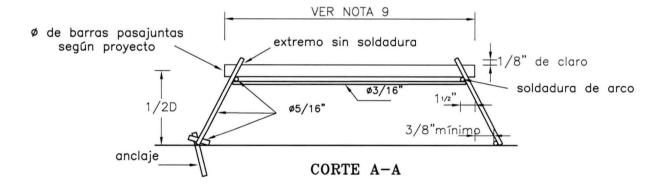
Cuando se tenga la losa conformada, se procederá a retirar el icopor de la parte superior y se construirá la estructura de sello.

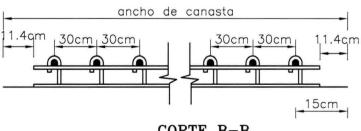
JUNTA DE EXPANSIÓN

1
A.C.I.
PROYECTOS


TIPO	4		

	1
IDU-259-2003	
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCIÓN Y/O EVALUACIÓN PARA REHABILITACIÓN DE	H
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES	ľ
GRUPO 2	1


4-6	ESCALA:
FECHA:	SIN
	BRE DE 2004

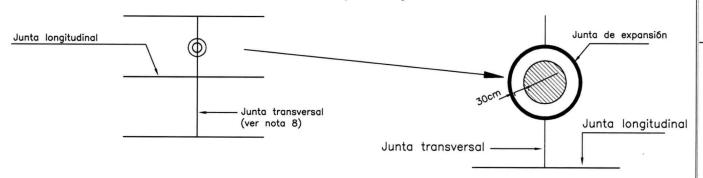

FIGURA 7.4

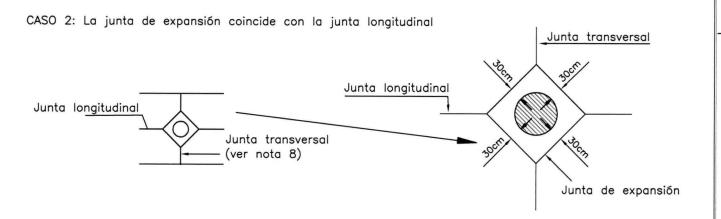
CANASTAS PASAJUNTAS EN JUNTAS TRANSVERSALES DE CONTRACCIÓN

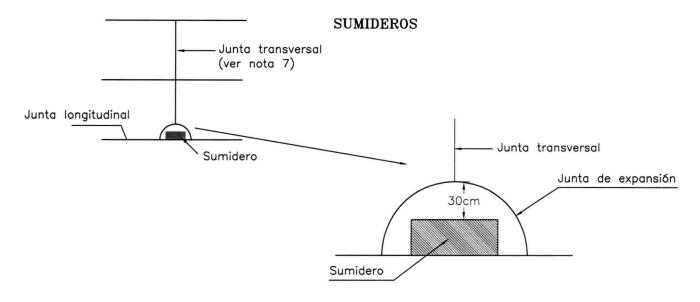
VISTA EN PLANTA

CORTE B-B

1	MUTO DE DESAMBOLLO URBANO
Q	Alcaldia Mayor
C\$1070	Bogotá D.C.
~	


_	-	
_	A.	.C.I.
•	P	ROYECTO

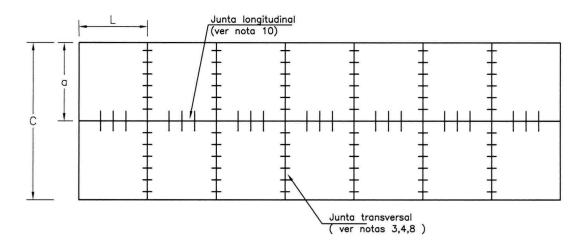

I		ľ
l	IDU-259-2003	١
	ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION Y/O EVALUACION PARA REHABILITACION DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2	1


	VIA	ESCALA:			
	4-6	SIN			
DE ALES	FECHA:				

CASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCIÓN

CASO 1: La junta de expansión no concide con la junta longitudinal

A.C.I. PROYECTOS


ASOS ESPECÍFICOS PROCESOS CONSTRUCTIVOS POZOS DE INSPECCION—SUMIDEROS IDU-259-2003
ESTUDIOS Y DISENOS PARA LA COSTRUCCION
Y/O EVALUACION PARA REHABILITACION DE
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES

4-6 ESCALA:
SIN

FECHA:
OCTUBRE DE 2004

FIGURA 7.6

MODULACIÓN DE LOSAS

NOTAS GENERALES:

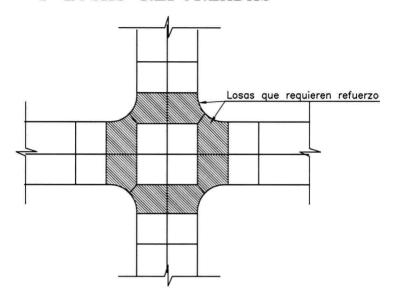
- El ancho de la placa (a) será la mitad de la calzada C/2.
 La relación de esbeltez (L/a) deberá estar entre 1.0 1.4
 Las juntas transversales serán de contracción aserradas con pasajuntas (tipo 1)
- 2. Donde se termine la fundida del día se construirá una junta transversal de
- 3. construcción (tipo 3). Esta junta deberá coincidir siempre con una junta
- transversal de contracción.
 La junta longitudinal será de construcción con pasajuntas (tipo 2).
 Se emplearon juntas de expansión tipo 4A (con dovelas) cuando se presenten
 cambios importantes en la dirección de la vía.
- 6. Para el caso de pozos y sumideros se empleará la junta de expansión tipo 4B. La modulación de las losas deberá ajustarse a la presencia de obras hidráulicas
- 7. como pozos de inspección y sumideros de tal manera que la junta transversal
- 8. coincida con dichas estructuras, manteniendo la relación de esbeltez. La longitud y diámetro de las barras pasajuntas dependerán del espesor de losa según el siguiente cuadro:

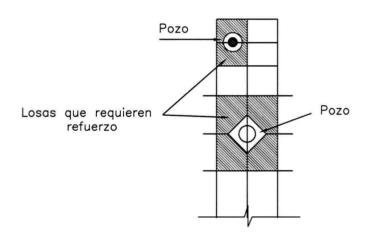
ESPESOR DEL PAVIMENTO		TRO DEL SADOR	LONGITUD TOTAL	SEPARACION ENTRE CENTROS	
(Cm)	(Cm)	(Pulg)	(Cm)	(Cm)	
16-18	2.22	7/8"	35		
19-20	2.54	1*	35	30	
21-23	2.54	1"	40	24	
24-25	2.54	1*	45	19	
26-28	2.54	1*	45	15	

- 10. La barra de amarre para la junta longitudinal de construcción será de 90cm de longitud y 1/2" de diámetro de acero de 420 MPa. Se colocarán 3 por losa.
- 11. Algunos de los detalles han sido tomados de los Criterios y Especificaciones para Diseño y Construcción de Pavimentos de Concreto Hidraulico — 2003. ASOCRETO.

1	
A Contract of	STITUTO DE DESARROLLO URBAHO
1 TO 1	Aloaldia Mayor
PROPERTY.	Borots D.C.

Ci	A.C.I. PROYECTOS


CONSULTOR


IDU-259-2003
ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION
Y/O EVALUACION PARA REHABILITACION DE
ACCESOS A BARRIOS Y PAVIMENTOS LOCALES
GRUPO 2.

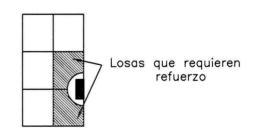

ESCALA
SIN

FIGURA 7.7

MODULACIÓN EN INTERSECCIONES Y LOSAS REFORZADAS

NOTA:

- 1. Todas las losas asimétricas requieren de refuerzo
- 2. El refuerzo consistirá en varillas $\emptyset 1/2$ " cada 25cm en las dos direcciones.
- 3. El refuerzo se colocará a una distancia de D/3 medida desde la parte superior de la losa.

A	CONSULTOR:		PROYECTO:	VIA	ESCALA:	
METITUTO DE DESARROLLO URBANO	A.C.I.		IDU-259-2003 ESTUDIOS Y DISEÑOS PARA LA COSTRUCCION	4-6	SIN	FIGURA 7.0
Alcaldia Mayor Bogota B.C.	PROYECTOS	MODULACIÓN EN INTERSECCIONES Y LOGAS REFORLADAS	ESTUDIOS Y DISENOS PARA LA COSTRUCCIÓN Y/O EVALUACION PARA REHABILITACIÓN DE ACCESOS A BARRIOS Y PAVIMENTOS LOCALES GRUPO 2.	OCTUBR	E DE 2004	FIGURA 7.8

7.3Capa granular tipo Subbase granular

La capa granular tipo subbase, deberá cumplir con las especificaciones establecidas en las normas IDU

7.4 Capa de concreto asfáltico

Los materiales por emplear en la construcción de la capa de rodadura (MDC-2) deberán cumplir con las Normas de construcción del INV – 1996, artículo 450

8. ANÁLISIS TÉCNICO DE ALTERNATIVAS

Desde el punto de vista técnico, las alternativas presentadas son viables y sus ventajas y desventajas son las siguientes:

8.1Losas apoyadas sobre una capa de suelo cemento

Las ventajas y desventajas que se tienen al implementar esta alternativa son las siguientes:

- Requiere de una profundidad de excavación del orden de 0.35 m
- Si el mezclado se hace en vía, se requiere del empleo de maquinas mezcladoras rotativas que garanticen un buen mezclado con el cemento.

DE BOGOTA D.C.

- Si se mezcla en planta, se facilita el proceso constructivo
- El material no es fácilmente erosionable, lo cual es favorable para evitar el fenómeno de bombeo en las losas
- En época de lluvias el rendimiento en el proceso constructivo se ve diezmado
- Las labores para mantenimiento son mínimas y se requieren en un lapso considerable de tiempo, aproximadamente cada 5 años

8.2Pavimento flexible

Sus ventajas y desventajas son las siguientes:

- Requiere de excavaciones del orden de 0.48 m.
- En época de lluvia los rendimientos de construcción disminuyen notablemente
- Su costo inicial es menor que la alternativa en pavimento rígido
- Su mantenimiento requiere de labores de parcheo y sello de fisuras cada 3 años aproximadamente

8.3 Alternativas recomendadas

Desde el punto de vista técnico, cualquiera de las alternativas presentadas podrá implementarse, sin embargo, teniendo en cuenta las características de los pavimentos en el barrio, se recomienda implementar la solución de losas apoyadas sobre una capa de base estabilizada con cemento

9. CONCLUSIONES Y RECOMENDACIONES

De los análisis y descripciones anteriores se deducen las siguientes conclusiones y recomendaciones:

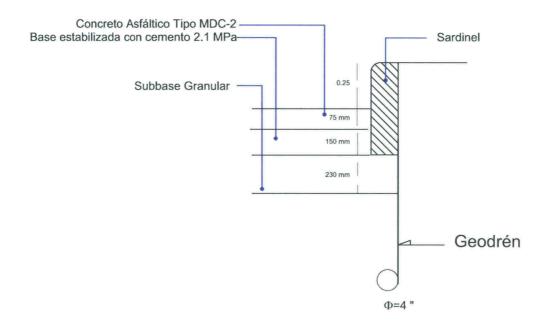
- La vía denominada 4.06, Canadá Guira S.O, presenta actualmente una capa granular tipo afirmado con desechos de construcción
- La subrasante natural encontrada corresponde a arcilla limosa y limo arcilloso de consistencia media
- Por las condiciones actuales de la vía, se recomienda como solución de rehabilitación la construcción de la estructura del pavimento, que por las condiciones topográficas y los pavimentos existentes en la zona, se recomienda que sea en concreto hidráulico.
- De acuerdo con las características de la subrasante y el tráfico esperado en los próximos 20 años, la alternativa para la estructura del pavimento es la siguiente:

Losa de concreto de MR=4.1 Mpa: 200 mm

Capa granular de suelo cemento, con una resistencia a los 7 días de 2.1 Mpa: 150 mm

 Para evitar la contaminación de los granulares se deberá colocar un geotextil de separación tipo T1400 o similar

- Los diseños presentados tienen como premisa que la vía contará con un adecuado sistema de drenaje superficial. Para el drenaje subsuperficial, se deberán colocar, tal como lo muestra la figura 9.1, filtros tipo geodrén o similar conectados a los sumideros o pozos de aguas lluvias. Estos filtros se deberán colocar a lo largo de la vía en ambos costados.
- De acuerdo con las características de la subrasante, se recomienda para los ándenes la siguiente estructura


Adoquín: 60 mm

Arena: 40 mm

Subbase granular: 250 mm

 Las conclusiones y recomendaciones presentadas en este informe, están basadas en investigaciones puntuales realizadas a lo largo de la vía, por lo cual es factible que durante la construcción se presenten condiciones diferentes a las consideradas en el presente estudio. En caso de que esto suceda, se deberá informar a la firma consultora para recomendar las medidas del caso

ESQUEMA DE LOCALIZACION DE GEODREN

Nota:

1. El tubo del geodrén se conectará al alcantarillado pluvial.

Alca.	e desarrollo urbano Idía Mayor gotá D.C.	CONTRATISTA:	A.C.I. PROYE	CTOS
TITULO:	SQUEMA DE LOCA	LIZACION DE 4-6	GEODREN	
DISEÑO. F. Cervantes	FECHA: OCTUBI	RE DE 2004	FI	GURA N° 9.1
REVISO: F. Cervantes	ESCALA: SIN I	SIN ESCALA		ARCHIVO:

MOVILIDAD
Instituto de Desarrollo Urbano

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

APIQUE No.

4-6-1

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 47B S No. 4-01 E

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.	OF. MUESTRA		١.	DECODIDAJÓN V ODOEDVA OJONES	
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES	
0,00	1	0.00-0.35	Alterada	0.00-0.35 Relleno en matriz de grava limosa amarilla de humedad media.	
0,50	2	0.35-0.85	. Inalterada	0.35-0.85 Arcilla amarilla y habana de plasticidad alta, humedad media y consistencia media.	
1,00					
1,50	3	0.85-2.00	Alterada	0.85-2.00 Arcilla limosa rojiza con habano de plasticidad alta y humedad media.	
2,00				2.00 FIN DEL APIQUE	

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

APIQUE No.

4-6-2

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 47 B N. 3F-02 E

REVISÓ:

F.C.V

HOJA No:

1 de 1

PROF.		MUESTRA	4	DESCRIPCIÓN Y OBSERVACIONES	
(m)	No	PROF. (m)	TIPO	DESCRIPCION Y OBSERVACIONES	
0,00	1	0.00-0.30	Alterada	0.00-0.30 Relleno de escombros de construcción en matriz de grava arcillosa amarilla de humedad alta.	
0,50					
1,00	2	0.30-1.28	Alterada	0.30-1.28 Arcilla limosa café con raíces finas algo orgánica de plasticidad baja y humedad alta.	
1,50					
	3	1.28-2.00	Alterada	1.28-2.00 Arcilla gris con raíces y grava de plasticidad media a alta y humedad media.	
2,00					
	_			2.00 FIN DEL APIQUE	

ESTUDIOS Y DISEÑOS DE ACCESOS A BARRIOS - GRUPO 2 CONTRATO IDU -259 DE 2003

REGISTRO DE PERFORACIÓN

APIQUE No.

4-6-3

REALIZÓ:

E.C.A

FECHA:

SEPT. 30 DE 2004

LOCALIZACIÓN:

CII 47 B No. 5D - 15 E

REVISÓ:

F.C.V

HOJA No:

1 de 1

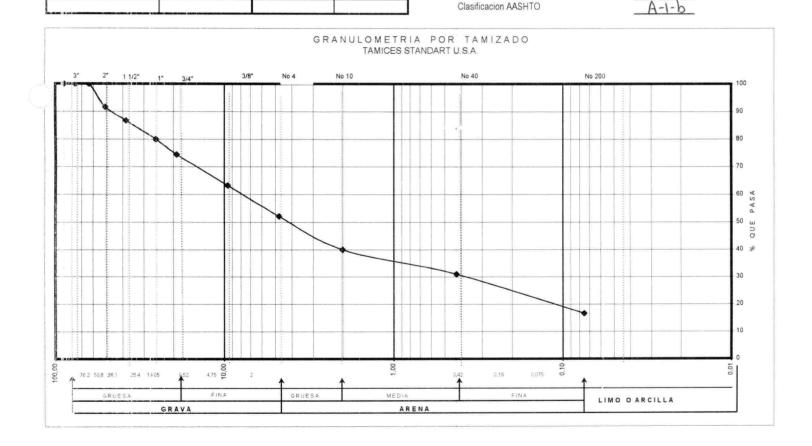
PROF.	MUESTRA			DECORIDOIÓN Y ORGERYA CIONES	
(m)	No	PROF. (m)	TIPO	DESCRIPCIÓN Y OBSERVACIONES	
0,00	1	0.00-0.35	Alterada	0.00-0.35 Relleno de escombros de construcción en matriz de gravarcillosa café de humedad alta.	
0,50			 -		
1,00		0.05.0.00	Alkanada		
1,50	2	0.35-2.00	Alterada	0.35-2.00 Limo arenoso café de plasticidad media y humedad media.	
2,00				2.00 FIN DEL APIQUE	

DETALLE DE ENSAYOS DE LABORATORIO

MOVILIDAD

Instituto de Desarrollo Urbano

FL-8


A.C.I. PROYECTOS S.A.

Clasificacion U.S.C.

C-259-4-06-01-01

ANALISIS GRANULOMETRICO

)BRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 30-Abr-04 **JBICACIÓN** RECEBO Calle 47B Sur No. 4-01 MARGEN IZQUIERDO DESCRIPCION: PROF.: 0.00/0.35 m GRADACION **HUMEDAD NATURAL** 1.868.0 1.558,0 P1 2192 Tamiz Peso retenido % Retenido % Pasa P2 1982 31/2" 0,0 0,0 100,0 P3 114.0 3" 0.0 00 100,0 %HUM 11,2 2" 1/2" 0.0 0.0 100.0 20,40% Límite Líquido 2" 156,0 8,4 91,6 Límite Plástico 15,65% 92.0 4.9 86.7 1 1/2" Índice Plasticidad 4,7% 1" 126.0 6.7 80.0 3/4" 104.0 5,6 74.4 Especificación: Gradacion tipo A 3/8" 208.0 11,1 63.3 sección 13 (IDU) 4 208.0 11,1 52,1 10 226,0 12,1 40,0 47,9 Grava (%) 40 170,0 9,1 30,9 35,5 Arena (%) 200 268,0 14,3 16,6 16,6 Finos (%) FONDO 310,0 16,6 6M

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-01-01

OBRA: UBICACIÓN

IDU-259-03
MARGEN

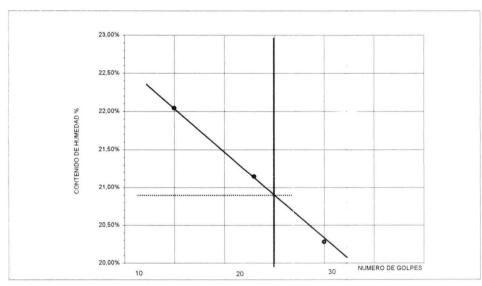
SECTOR: IZQUIERDO SAN CRISTOBAL

FECHA:

30-Abr-04

RECEBO DESCRIPCION:

LIMITE LIQUIDO


	LIMIT L	GOIDO	
No. De Golpes	30	23	15
Recipiente No	122	115	120
P1 gr.	39,69	35,70	34,28
P2 gr.	33,7	30,30	28,88
P3 gr.	4,16	4,76	4,38
% Humedad	20,3%	21,1%	22,0%

Limite Liquido % 20,40% Límite Plástico % 15,65% Indice de Plasticidad % 4,7%

LIMITE PLASTICO

Recipiente No 39 29					
39	29				
24,3	25,89				
21,88	23,45				
6,39	7,89				
15,62%	15,68%				
	24,3 21,88 6,39	24,3 25,89 21,88 23,45 6,39 7,89			

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

4

10

40

200

FONDO

0,0

0.0

1,9

33,2

282,5

0,0

0,0

0,6

10,5

88,9

A.C.I. PROYECTOS S.A.

Grava

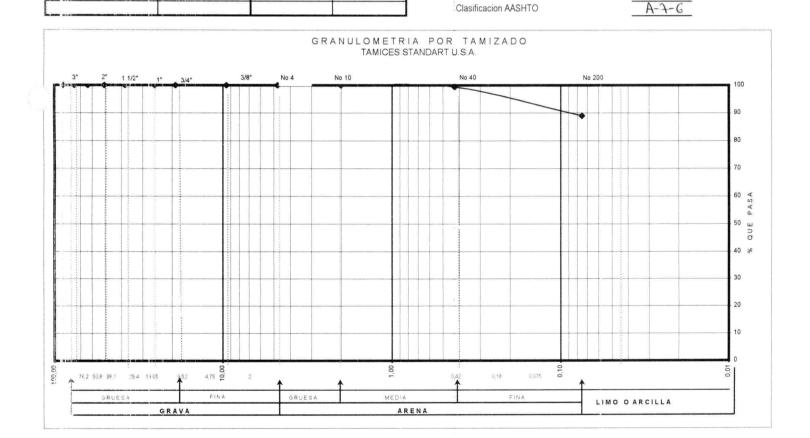
Arena

Finos (%)

(%)

(%)

Clasificacion U. S. C.


FL-8 ANALISIS GRANULOMETRICO C-259-4-06-01-02 DBRA: IDU-259-03 SECTOR: **FECHA** 30-Abr-04 SAN CRISTOBAL IZQUIERDO JBICACIÓN. Calle 47B Sur No. 4-01 MARGEN SUELO NATURAL DESCRIPCION: PROF.: 0,35/0,85 m GRADACION **HUMEDAD NATURAL** 317,6 35,1 480 Tamiz Peso retenido % Retenido % Pasa P2 379,9 31/2" 0,0 0,0 100,0 P3 62,3 3* 0.0 0.0 100.0 %HUM 31.5 2" 1/2" 0,0 0,0 100,0 Limite Liquido 61,40% 2" 0,0 0,0 100,0 Límite Plástico 28,25% 1 1/2" 0.0 0,0 100.0 Índice Plasticidad 33,1% 1" 0,0 0.0 100.0 0,0 0.0 100,0 Especificación: Gradacion tipo A 3/8" 0.0 0.0 100.0 sección 13 (IDU)

100,0

100,0

99,4

88.9

OBSERVACIONES:

FIRMA:

Ingeniero

0.0

11,1

88.9

CH

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-01-02

OBRA: UBICACIÓN DESCRIPCION:

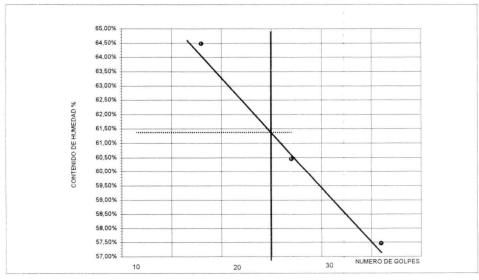
ID	U-259-03
Calle 47B Sur No. 4-01 Este	MARGEN
SUELO NATURAL	

SECTOR: IZQUIERDO SAN CRISTOBAL

FECHA:

30-Abr-04

LIMITE LIQUIDO


		a o i o o	
No. De Golpes	36	27	18
Recipiente No	146	23	99
P1 gr.	30,66	35,94	34,92
P2 gr.	21,07	25,01	23,27
P3 gr.	4,38	6,93	5,2
% Humedad	57,5%	60,5%	64,5%

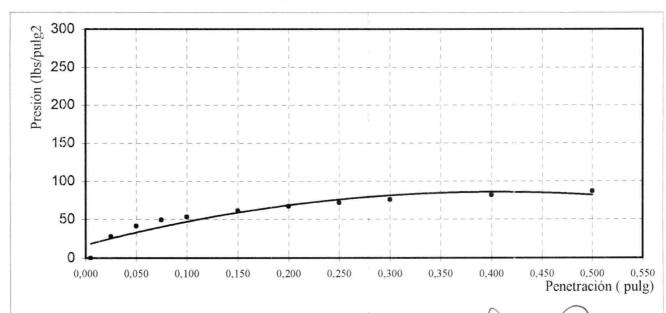
Limite Liquido % 61,40% Límite Plástico % 28,25% Indice de Plasticidad % 33,1%

LIMITE PLASTICO

Recipiente No	82	85	
P1 gr.	16,53	16,5	
Recipiente No P1 gr. P2 gr. P3 gr.	14,08	14,15	
P3 gr.	5,44	5,80	
% Humedad	28,36%	28,14%	-

Indice de Grupo A.A.S.H.T.O. U.S.C.

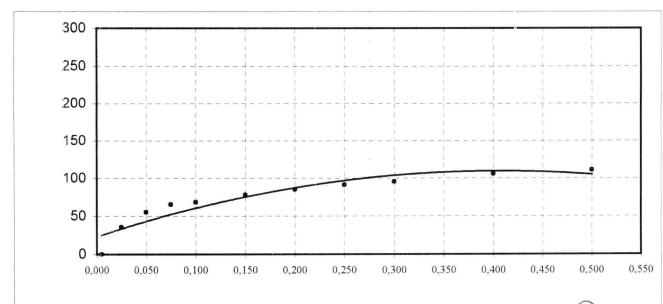
OBSERVACION


Firma:

Firma:

FL - 20		ENSA	YO DE CBR	INALTERADO	C-259	9-4-06-01-02
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL	FECHA:	30-Abr-04
MARGEN:	IZQUIERDO		PROF. m.	0,35/0,85 m	CBR:	1
UBICACIÓN			BARRENO	1	MUESTRA	2
Molde No.		16 SATUR	ADO		 PESO	UNITARIO
Lectura de expansión inicial		0			P-muestra gr	
Lectura de expansión 1er día		14			V- muestra c.	c
Lectura de expansión 2er día		23			% HUM.	
Lectura de expansión 3er día		32			DEN,SEC gr/d	cc
Lectura de expansión 4er día		41				
Expansión total %		0,8				
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.			
0,005	0	0,00	0,00			
0,025	38,00	83,78	27,93			
0,050	56,00	123,46	41,15			
0,075	67,00	147,71	49,24	,		
0,100	72,00	158,73	52,91			
0,150	83,00	182,98	60,99			
0,200	91,00	200,62	66,87			
0,250	97,00	213,85	71,28			
0,300	103,00	227,08	75,69			
0,400	111,00	244,71	81,57	ŧ		
0,500	118,00	260,15	86,72	1		
Humedad de penetr. %	33,0%					
CBR Correg. a 01	5,29					
CBR Correg. a 02	4,46					

CURVAS DE PRESION Y PENETRACION


GENTECHOLOGO

INGENIERO

FL - 20		ENSA	YO DE CBR	INALTERADO)		C-259-4	1-06-01-02
PROYECTO:	IDU-259-2003		SECTOR	SAN CRISTOBAL		FECH	HA:	30-Abr-04
MARGEN:	IZQUIERDO		PROF. m.	0,35/0,85 m		CBR	t:	1
UBICACIÓN	M		BARRENO	1		MUE	STRA	2
Molde No.		16 SIN SAT	URAR	1		T	PESO UN	ITARIO
Lectura de expansión inicial		0				P-mi	uestra gr	202,7
Lectura de expansión 1er día		0					uestra c.c	109
Lectura de expansión 2er día		0				% H	UM.	31,5
Lectura de expansión 3er día		0				DEN	,SEC gr/cc	1,414
Lectura de expansión 4er día		0						
Expansion total %		0,0						
PENETRACION PULG.	CARGA KG	CARGA LB	CARGA P.S.I.					
0,005	0	0,00	0,00					
0,025	48,00	105,82	35,27					
0,050	75,00	165,35	55,12					
0,075	89,00	196,21	65,40					
0,100	93,00	205,03	68,34					
0,150	106,00	233,69	77,90	N.				
0,200	116,00	255,74	85,25					
0,250	124,00	273,37	91,12	1				
0,300	130,00	286,60	95,53	×				
0,400	144,00	317,47	105,82					
0,500	151,00	332,90	110,97					
Humedad de penetr. %	31,5%							
CBR Correg. a 01	6,83			i i				
CBR Correg. a 02	5,68							

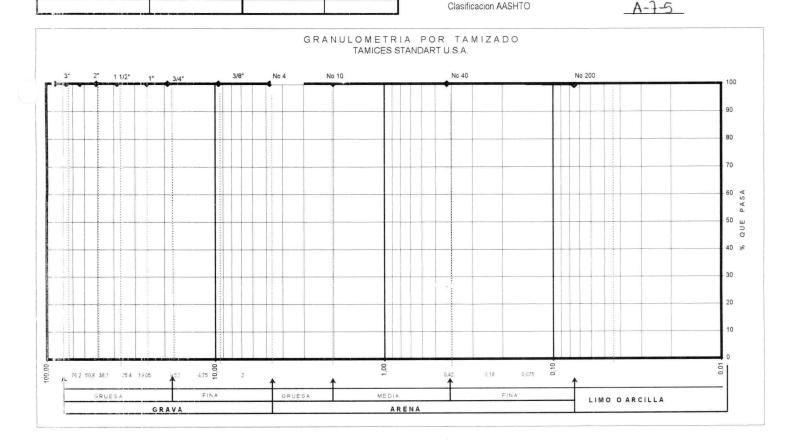
CURVAS DE PRESION Y PENETRACION

SECTE CHOLOGO

INGENIERO

FL-8

FONDO


337,9

99.4

A.C.I. PROYECTOS S.A.

Clasificacion U.S.C.

ANALISIS GRANULOMETRICO C-259-4-06-01-03 DB RA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 30-Abr-04 UBICACIÓN Calle 47B Sur No. 4-01 MARGEN IZQUIERDO DESCRIPCION: SUELO NATURAL 0,85/2,00 m PROF.: GRADACION **HUMEDAD NATURAL** P1 518 339,9 Tamiz Peso retenido % Retenido % Pasa P2 404 100,0 31/2" 0,0 0,0 P3 64,1 3" 33,5 0,0 0,0 100,0 %HUM 2" 1/2" 0,0 0,0 100,0 Limite Liquido 61,90% 2" 0,0 0,0 100,0 Límite Plástico 32,26% 0,0 100,0 1 1/2" 0,0 Índice Plasticidad 29.6% 1" 0,0 0,0 100.0 3/4" 0,0 0,0 100,0 Especificación: Gradacion tipo A 3/8" 0,0 0,0 100,0 sección 13 (IDU) 4 0,0 0,0 100,0 0,0 10 0,0 0,0 100,0 Grava (%) 40 0,0 0,0 100,0 0,6 Arena (%) 99,4 200 2,0 0,6 99,4

OBSERVACIONES:

FIRMA:

MH-CH

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-01-03

OBRA: **UBICACIÓN** DESCRIPCION:

100-259-03
MARGEN

SECTOR: IZQUIERDO SAN CRISTOBAL

FECHA:

30-Abr-04

SUELO NATURAL

LIMITE LIQUIDO

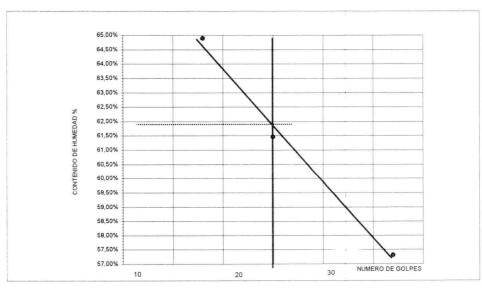
No. De Golpes	37	25	18
Recipiente No	118	121	114
P1 gr.	31,88	31,57	26,87
P2 gr.	21,96	21,11	18,13
P3 gr.	4,65	4,09	4,66
% Humedad	57,3%	61,5%	64,9%

Límite Liquido %

61,90%

Límite Plástico %

32,26%


Indice de Plasticidad %

29,6%

LIMITE PLASTICO

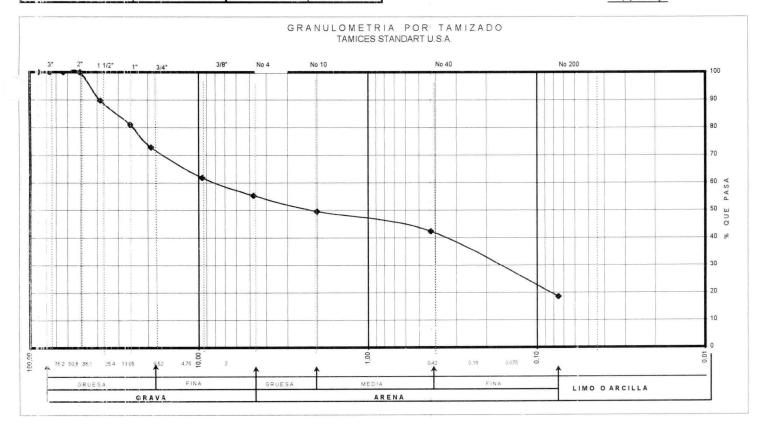
Recipiente No	Recipiente No 101 68				
P1 gr.	15.11	17.27			
P2 gr.	12,67	14,53			
P3 gr.	5,13	6,01			
% Humedad	32,36%	32,16%			

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:



FL-8 ANALISIS GRANULOMETRICO C-259-4-06-02-01

IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 30-Abr-04 UBICACIÓN Calle 47B Sur No. 3F-02 MARGEN DERECHO DESCRIPCION: **RECEBO** 0,00/0,30 m PROF.: GRADACION **HUMEDAD NATURAL** 1.758,0 1.432,0 P1 2168 Tamiz Peso retenido % Retenido % Pasa P2 1874 31/2" P3 0,0 0,0 100,0 116,0 %HUM 16,7 Limite Liquido 21,60%

3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2*	0,0	0,0	100,0
1 1/2"	180,0	10,2	89,8
1*	154,0	8,8	81,0
3/4"	144,0	8,2	72,8
3/8"	192,0	10,9	61,9
4	114,0	6,5	55,4
10	104,0	5,9	49,5
40	126,0	7,2	42,3
200	418,0	23,8	18,5
FONDO	326,0	18,5	

Limite Plástico 13,91% 7,7% Índice Plasticidad Gradacion tipo A Especificación: sección 13 (IDU) 44,6 Grava (%) 36,9 Arena (%) 18,5 Finos (%) 6C Clasificacion U. S. C. A-2-4 Clasificacion AASHTO

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-02-01

OBRA: UBICACIÓN DESCRIPCION: IDU-259-03

MARGEN

SECTOR: DERECHO

SAN CRISTOBAL

30-Abr-04

Calle 47B Sur No. 3F-02 Este

SUELO NATURAL

LIMITE LIQUIDO

No. De Golpes 36 24 14							
	(35,50)		19.75				
Recipiente No	119	123	116				
P1 gr.	41,01	37,55	44,64				
P2 gr.	34,89	31,68	37,07				
P3 gr.	4,20	4,35	4,83				
% Humedad	19,9%	21,5%	23,5%				

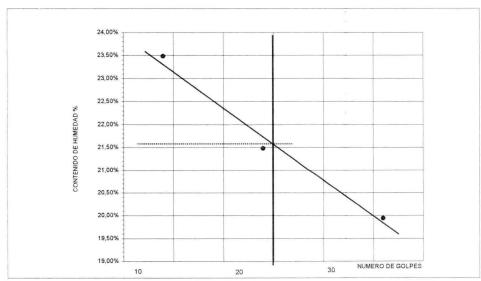
Límite Liquido %

FECHA:

21,60%

Límite Plástico %

13,91%


Indice de Plasticidad %

7,7%

LIMITE PLASTICO

LIMITE PLASTICO					
Recipiente No	109	130			
P1 gr.	11,75	10,07		1	
P2 gr.	10,97	9,37	v		
P3 gr.	5,35	4,35			
% Humedad	13,88%	13,94%		1	

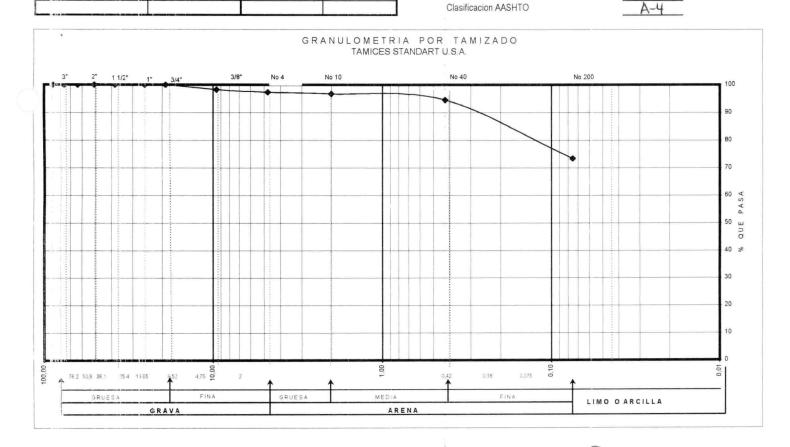
Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Firma:

FONDO


334,8

73,4

A.C.I. PROYECTOS S.A.

Clasificacion U.S.C.

FL-8 ANALISIS GRANULOMETRICO C-259-4-06-02-02 OBRA: IDU-259-03 SECTOR: SAN CRISTOBAL **FECHA** 30-Abr-04 UBICACIÓN Calle 47B Sur No. 3F-02 MARGEN DERECHO SUELO NATURAL DESCRIPCION: PROF : 0,30/1,28 m GRADACION **HUMEDAD NATURAL** 456,4 121,6 730 Tamiz Peso retenido % Retenido % Pasa P2 566 31/2" 0,0 100,0 109,6 3* 0,0 100,0 %HUM 35,9 2" 1/2" 0,0 0,0 100,0 Limite Liquido 21,60% 2" 0,0 0,0 100,0 Límite Plástico 13.91% 0,0 1 1/2" 0.0 100,0 Índice Plasticidad 7,7% 1* 0,0 0,0 100,0 3/4" 0,0 0,0 100,0 Especificación: Gradacion tipo A 3/8" 7,9 1,7 98,3 sección 13 (IDU) 4 4,5 1,0 97,3 2,2 10 0,5 96,8 2,7 Grava (%) 40 10,5 23,9 2,3 94,5 Arena (%) 200 96,5 21,1 73,4 73,4 Finos (%)

OBSERVACIONES:

FIRMA:

Ingeniero

CL

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-02-02

OBRA: **UBICACIÓN** DESCRIPCION:

IDU-259-03	
100-200-00	
	-

SECTOR:

SAN CRISTOBAL

Calle 47B Sur No. 3F-02 Este DERECHO MARGEN SUELO NATURAL

FECHA:

30-Abr-04

LIMITE LIQUIDO

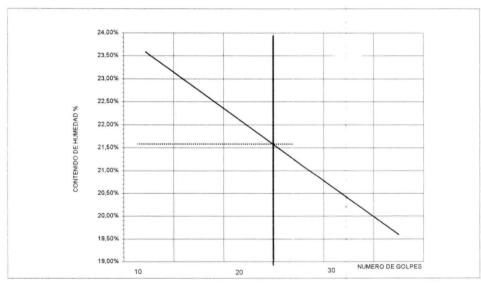
	EIMITE EIGOIDO		
No. De Golpes	36	27	17
Recipiente No	35	133	96
P1 gr. P2 gr.	42,65	38,51	38,42
P2 gr.	32,47	28,56	28,44
P3 gr.	6,60	4,39	5,43
% Humedad	39,4%	41,2%	43,4%

Límite Liquido %

21,60%

Límite Plástico %

13,91%


Indice de Plasticidad %

7.7%

LIMITE PLASTICO

	EIMITE LEASTICO			
Recipiente No	109	130		
P1 gr.	11,75	10,07		
P2 gr.	10,97	9,37		
P3 gr.	5,35	4,35		
% Humedad	13,88%	13,94%	1.	

Indice de Grupo A.A.S.H.T.O. U.S.C.

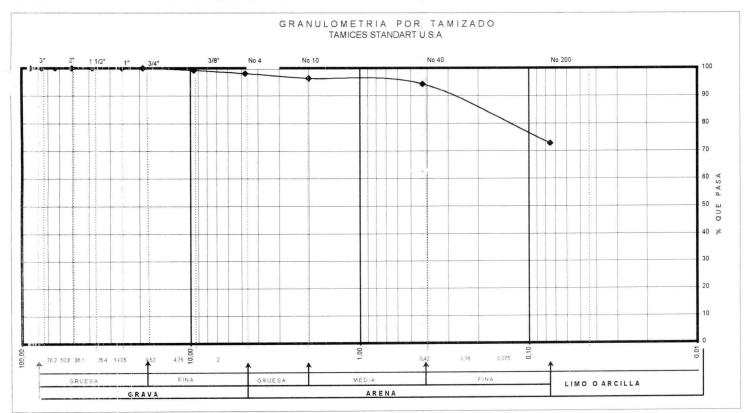
OBSERVACION

Firma:

Firma:

FL-8 ANALISIS GRANULOMETRICO C-259-4-06-02-03

 OBRA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 30-Abr-04


 UBICACIÓN
 Calle 47B Sur No. 3F-02
 MARGEN
 DERECHO
 DESCRIPCION:
 SUELO NATURAL

 PROF.:
 1,28/2,00 m

GRADACION

P1=	666,7	P2=	181,-
Tamiz	Peso retenido	% Retenido	% Pasa
31/2*	0,0	0,0	100,0
3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2*	0,0	0,0	100,0
1 1/2"	0,0	0,0	100,0
1*	0,0	0,0	100,0
3/4"	0,0	0,0	100,0
3/8"	5,8	0,9	99,1
4	7,5	1,1	98,0
10	11,2	1,7	96,3
40	14,1	2,1	94,2
200	142,8	21,4	72,8
FONDO	485,3	72,8	

HUMEDA	D NATURA	L
P1	988	
P2	778	
P3	111,3	
%HUM	31,5	
Limite Liquido		41,55%
Limite Plástico		23,28%
Índice Plasticidad		18,3%
Especificación: Gradac sección 13 (IDU)	ion tipo A	
Grava (%)		2,0
Arena (%)		25,2
Finos (%)		72,8
Clasification II C C		CL
Clasificacion U. S. C.		

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-02-03

OBRA: UBICACIÓN IDU-259-03
Calle 47B Sur No. 3F-02 Este MARGEN

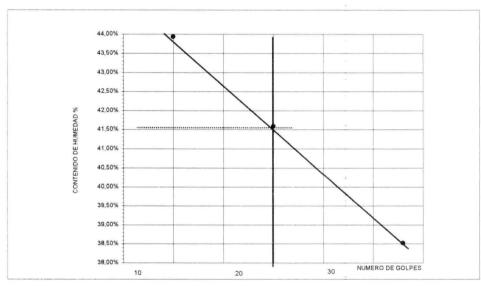
SECTOR: DERECHO SAN CRISTOBAL

FECHA:

30-Abr-04

DESCRIPCION: SUELO NATURAL

LIMITE LIQUIDO


LIMITE LIQUIDO						
No. De Golpes	38	25	15			
Recipiente No	81	107	28			
P1 gr.	40,10	38,20	36,46			
P2 gr.	30,62	28,46	27.73			
P3 gr.	6,01	5,04	7,86			
% Humedad	38,5%	41,6%	43,9%			

Límite Liquido %	41,55%	
Límite Plástico %	23,28%	
Indice de Plasticidad %	18.3%	

LIMITE PLASTICO

Recipiente No	32	30		
P1 gr.	20,03	21,35		
P2 gr.	17,61	18,84	7.	
P3 gr.	7,26	8,01		
% Humedad	23,38%	23,18%	¥	

Indice de Grupo A.A.S.H.T.O. U.S.C.

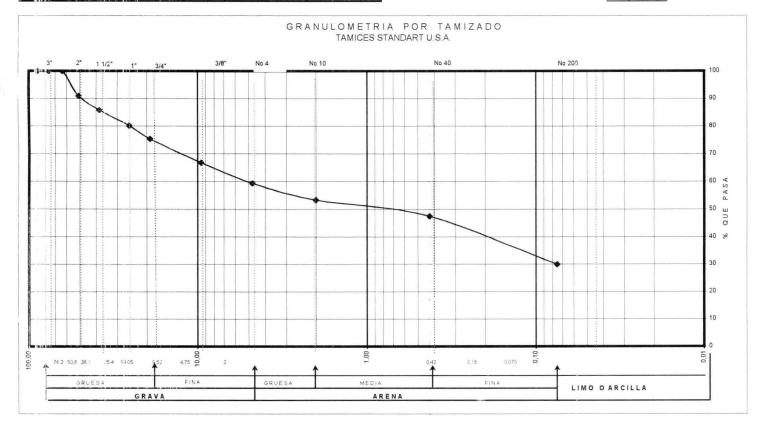
OBSERVACION

Firma:

enfruit -

Firma:

FL-8 ANALISIS GRANULOMETRICO C-259-4-06-03-01



 OB VA:
 IDU-259-03
 SECTOR:
 SAN CRISTOBAL
 FECHA
 30-Abr-04

 UBICACIÓN PROF.:
 Calle 47B Sur No. 5D-15 MARGEN 0,000,35 m
 IZQUIERDO
 DESCRIPCION:
 RECEBO

GRADACION

P1=	1.909,8	P2=	1.340,
Tamiz	Peso retenido	% Retenido	% Pasa
31/2"	0,0	0,0	100,0
3*	0,0	0,0	100,0
2" 1/2"	0,0	0,0	100,0
2"	174,0	9,1	90,9
1 1/2"	98,0	5,1	85,8
1"	108,0	5,7	80,1
3/4"	90,0	4,7	75,4
3/8"	166,0	8,7	66,7
4	142,0	7,4	59,3
10	114,0	6,0	53,3
40	112,0	5,9	47,4
200	336,0	17,6	29,8
FONDO	569,8	29,8	

	HUMED	AD NATURA	L
	P1	2342	
	P2	2026	
	P3	116,2	
%F	MUH	16,5	
imite Líquido		_	29,70%
imite Plástico			18,68%
ndice Plasticidad			11,0%
Especificación: sección 13 (IDU)	Grada	acion tipo A	
Grava (%)			40,7
nena (%)			29,4
Finos (%)			29,8
Clasificacion U. S. C.			GC
Clasificacion AASHTO			A-2-

O36 ERVACIONES:

FIRMA:

.........

LIMITES Y CLASIFICACION

C-259-4-06-03-01

OBRA: UBICACIÓN IDU-259-03
Calle 47B Sur No. 5D-15 Este MAR

59-03 SECTOR: IZQUIERDO

SAN CRISTOBAL

FECHA:

30-Abr-04

DESCRIPCION: REC

RECEBO

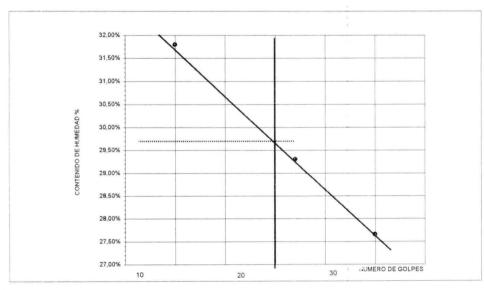
LIMITE LIQUIDO No. De Golpes 35 15 Recipiente No 83 153 100 45,98 41,98 P1 gr. 41,43 P2 gr. 37,3 33,47 32,65 P3 gr. 5.91 4.43 5.04 % Humedad 27,7% 29,3% 31,8%

Límite Liquido %

29,70%

Límite Plástico %

18,68%


Indice de Plasticidad %

11,0%

LIMITE PLASTICO

5 THE PROPERTY OF						
Recipiente No	24	20				
P1 gr.	25,1	23,89				
P2 gr.	22,37	21,37	¥			
P3 gr.	7,8	7,84				
% Humedad	18,74%	18,63%	·			

Indice de Grupo A.A.S.H.T.O. U.S.C.

OBSERVACION

Firma:

Geotécnólogo

Firma:

3/4"

3/8"

4

10

40

200

FONDO

0.0

0,0

3,7

2,3

6,8

123,2

293,5

0.0

0,0

0.9

0,5

1,6

28,7

68,3

A.C.I. PROYECTOS S.A.

FL-8 ANALISIS GRANULOMETRICO C-259-4-06-03-02 OBRA: IDU-259-03 SECTOR: CAN CRISTOBAL **FECHA** 30-Abr-04 UBICACIÓN Calle 47B Sur No. 5D-15 MARGEN IZQUIERDO DESCRIPCION: SUELO NATURAL PROF.: 0,35/2,00 m GRADACION **HUMEDAD NATURAL** P1= 429,5 136,0 P1 652 Tamiz Peso retenido % Retenido % Pasa P2 492 31/2" 0,0 0,0 100,0 P3 62,5 3* 0,0 0,0 100,0 37,3 %HUM 2" 1/2" 0,0 0.0 100.0 Límite Líquido 37,60% 2" 0,0 0,0 100,0 Límite Plástico 24,84% 1 1/2" 0,0 0,0 100,0 Índice Plasticidad 12,8% 1" 0,0 0,0 100,0

100,0

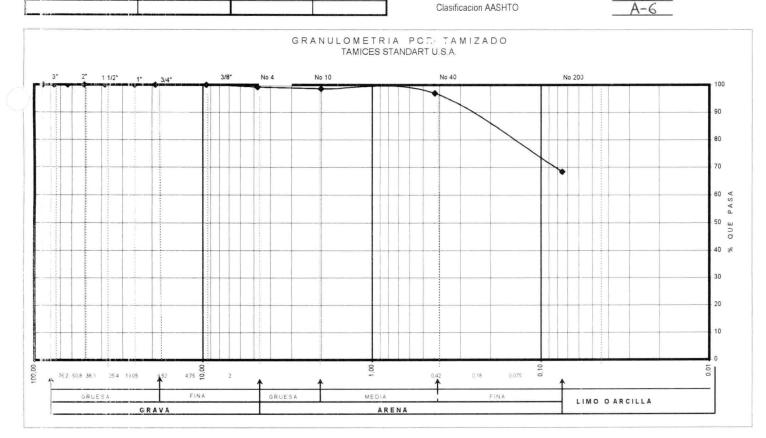
100,0

99.1

98,6

97,0

68,3


Grava (%)
Arena (%)
Finos (%)
Clasificacion U. S. C.

Especificación:

sección 13 (IDU)

0,9 30,8 68,3

Gradacion tipo A

OBSERVACIONES:

FIRMA:

FL - 9

LIMITES Y CLASIFICACION

C-259-4-06-03-02

OBRA: UBICACIÓN DESCRIPCION:

| IDU-259-03 | Calle 47B Sur No. 5D-15 Este | MAR

259-03 SECTOR: IZQUIERDO

SAN CRISTOBAL

FECHA:

30-Abr-04

SUELO NATURAL

LIMITE LIQUIDO

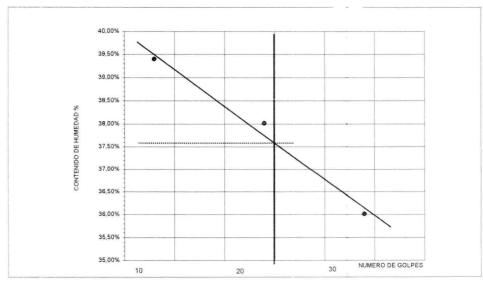
No. De Golpes	34	24	13
Recipiente No	36	105	98
P1 gr.	47,82	41,66	40,69
P2 gr.	37,04	31,59	30,66
P3 gr.	7,10	5,10	5,2
% Humedad	36,0%	38,0%	39,4%

Límite Liquido %

37,60%

Límite Plástico %

24,84%


Indice de Plasticidad %

12,8%

LIMITE PLASTICO

Recipiente No 71 76						
71	76					
32,67	33,41					
30,17	30,91					
20,14	20,81					
24,93%	24,75%					
	71 32,67 30,17 20,14	71 76 32,67 33,41 30,17 30,91 20,14 20,81	71 76 32,67 33,41 30,17 30,91 20,14 20,81			

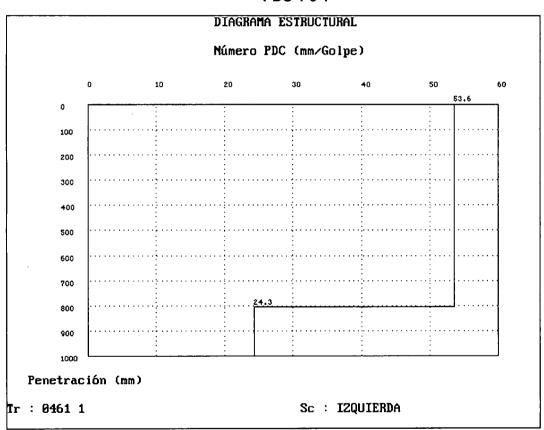
Indice de Grupo A.A.S.H.T.O. U.S.C.

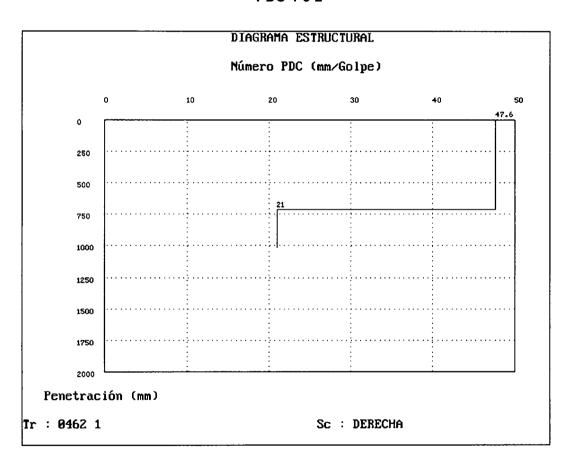
OBSERVACION

Firma:

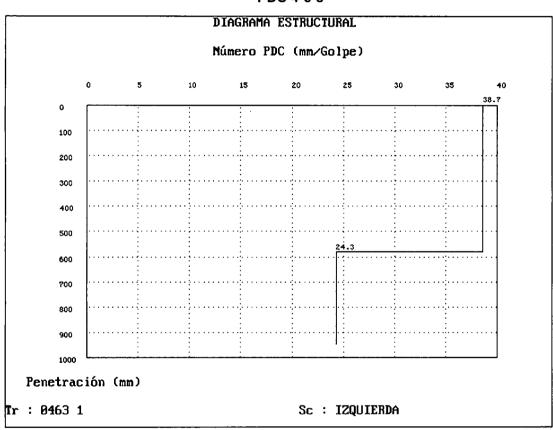
Geotécnólógo

Firma:




ENSAYOS DE PENETRACIÓN CON CONO

MOVILIDAD
Instituto de Desarrollo Urbano


PDC 4-6-1

PDC 4-6-2

PDC 4-6-3

PORTLAND CEMENT ASSOCIATION METHOD

	ľ	Metric Units		English Units	
ETE DATA				医抗乳毒素剂	
Modulus of Rupture	MR	41,00	kg/cm2	583,16	psi
Thickness	Н	19,30		7,60	in
Modulus of Elasticity	E1	273000		3.900.000	psi
Unit Weight	WT	2.130	kg/m3	133	pcf
Coef. of Thermal expansion	CT	3,60E-06		2,00E-06	/°F
Poisson's ratio	u	0,15		0,15	
Radius of Relative Stiffness	1	77,13	cm	30,36	in
Coefficient of Variation	CV	0,15		0,15	and:
ENT DATA			773 116		
Total Width	Tw	3,50	m	11,48	ft
Numbers of Lanes	NI	1,00		3,28	ft
Width Lane	W	3,66		12,01	ft
Slab Length	SI	3,50		11,48	ft
Concrete Shoulders	Sh	No		yes or no)	
Doweled Joints	Di	Yes		yes or no)	
Tie Bars	Tb	Yes		yes or no)	
Annual Growth Rate	Tca		%	0	%
Desing Period	Dp	20	Years	20	Year
Drying Shrinkage Coefficient	Lse	0,0002		0,0002	
ATION PAVEMENT STRUCTU	IRE		gmude.		
C.B.R.	CBR	5,00	%	5,00	%
K on Top off Sub Base	K	4,76	k/cm2	171,59	pci
Sub Base Type (Choise	se Untreated	or Treated) =		Treated	
Untreated Sub Base	Depth	•	cm		in
	Module		k/cm2		psi
Treated Sub Base	Depth	15	cm	5,91	in
Elastic	Module	3500	k/cm2	50000,00	psi
Coefficient of Friction Between	n Sub Bas	e and Slab		0,65	
					545
MENTAL DATA					
MENTAL DATA Mean Annual Wind Speed	- 1 m m	10,00	kph	6,22	mph
		10,00 17,00	kph °C		mph °F

PORTLAND CEMENT ASSOCIATION METHOD

									PCA 1984
AXLE	BY LSF			CO	NCRETE FATIGUE ANA	LISYS	CON	CRETE EROSION ANALIS	SYS
LOAD	LSF #¡REF!	TOTAL STRESS	EXPECTED REPETITIONS	CONCRETE STRESS RATIO	ALLOWABLE REPETITIONS	FATIGUE PERCENT	CONCRETE POWER FACTOR	ALLOWABLE REPETITIONS	DAMAGE PERCENT
kips		psi			N	%		N	%
	Ruputu	re Module	583,2	Sum of	f Single Fatigue	0,00%		Sum of erosion Fatigue	3,09%
	Trial T	hickness	7,60	Sub Ba	ase Subgrade K	171,59	Erosion	Doweled Joints	Yes
	Dowel	led Joints	Yes	Conc	rete Shoulders	No		Concrete Shoulders	No
SINGLE A	AXLES								
19,80	#¡REF!		131.400		#¡VALOR!	0,0%	26,81	4.256.235	3,1%
Portland	Cement As	ssociation N	lethod						PCA 1984
AXLE	BY LSF			CO	NCRETE FATIGUE ANA	LISYS	CON	CRETE EROSION ANALIS	SYS
LOAD	LSF	TOTAL	EXPECTED	CONCRETE	ALLOWABLE	FATIGUE	CONCRETE	ALLOWABLE	DAMAGE
20.0	#¡REF!	STRESS	REPETITIONS	STRESS RATIO	REPETITIONS	PERCENT	POWER FACTOR	REPETITIONS	PERCENT
kips		psi			N	%		N	%
	Ruputu	ire Module	583,2	Sum o	f Single Fatigue	0,00%		Sum of erosion Fatigue	0,00%
							Erosion		
				A				· 1. 70 生成 · 12 / 12 / 12 / 13 / 13 / 13 / 13 / 13 /	
TANDEM	AXLES	12.12.1							
Man & Allin Man (Man (Man)	#¡REF!	A	New Year Control of the Control of t			0,0%		Unlimited	0,0%
				To	otal Concrete Fatigue =	0,0%		Total Erosion Fatigue =	3,1%

VÍA 04-06

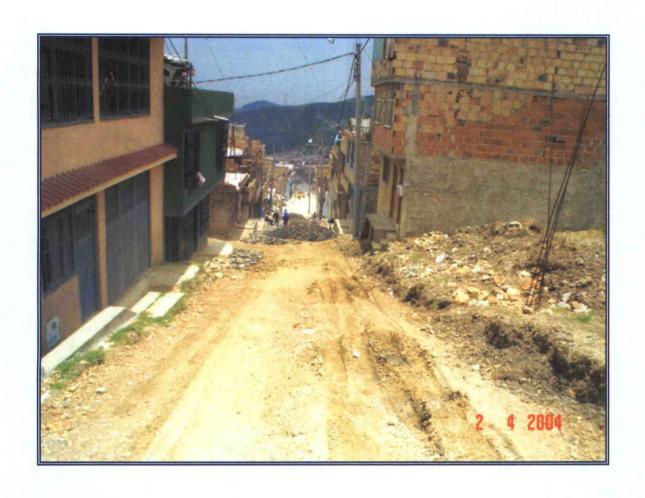
DISEÑO DE PAVIMENTO MÉTODO AASHTO

R	90%
Z _R	-1,282
So	0,45
Ро	4,2
Pf	2,5
SN	3,1
Módulo de la subrasante (psi)	7500
N requerido	5,00E+05
N admisble	5,01E+05

COEFICIENTES DE CAPA				
CONCRETO ASFÁLTICO	0,35			
BASE ESTABILIZADA CON CEMENTO	0,18			
SUBBASE GRANULAR	0,11			

COEFICIENTES DE CAPA					
CONCRETO ASFÁLTICO	0,35				
BASE ESTABILIZADA CON CEMENTO	1,00				
SUBBASE GRANULAR	1,00				

CAPA	ESPESOR (cm)
CONCRETO ASFÁLTICO	7,5
BASE ESTABILIZADA CON CEMENTO	15,0
SUBBASE GRANULAR	24,0
SN	3,1



REGISTRO FOTOGRÁFICO

MOVILIDAD

Instituto de Desarrollo Urbano

VIA 4-6

				FORMATO					ا ا ا		
HOJA TESTIGO PARA DOCUMENTAR IRREGULARIDADES											
CĆ	DIGO			PROCESO			VER	SIÓN			
FC	DO2?	i I	Ge	estión Documenta	l			1			
CÓDIGO DE	BARRAS DEL TO										
	DESCRIPCION: El contenido relacionado a este tomo presenta la siguiente situación:										
1	Reorganización										
1.1.	- Original con foliación y/o paginación errada y reorganizado										
1.2.	- Capitulo y/o anexoreorganizado										
1,3.	- Paginación incongruente / irregular										
1.4.	- Original con foliación y/o paginación errada										
1.5.	- Paginación / foliación incompleta (faltante)										
2	Baja calidad del original - Folios de baja calidad (texto que no se puede leer o imagen ilegible)									_	
2.1.	- Folios	de baja (calidad (texto	que no se puede	ieer o imagen ileg	ible)		ļ			
2.2.	- Folios			on a mano sin tac							
2.3.	- Folios	con en	mendaduras (i	folio donde se tac	ha un texto y se e	scribe otro)				
2.4.	- Unico ejempl	ar con texto foto	copiado						-		
2.5.	- Anexos	fotocopiados									
									· · · · · · · · · · · · · · · · · · ·		
3	Documento sin datos adjuntos										
3.1.	- Anexo sin datos adjuntos.										
3.2.	- Capitulo sin datos adjuntos										
3.3.	- Capítulo con numeración errada										
3.4.	- Separador sin datos adjuntos										
<u></u>								ļ			
4	Anexo		dio magnético	. Consultar							
5.		blanco	-								
6.	Folios	duplica	dos					1			
-				·							
7.	Folios / Docum	ento	no d	igitalizado según	Ley 1266 de 2008	3		1			
8.	Folios / Docu			 	por derechos de						
9.	Otros (observa	ciones)									
OBSERVACIONES (describir caracteristicas adicionales)											
Anexo 2 con anotaciones a mano.											