

CONTRATO DE CONSULTORÍA No. 1630 DE 2020

ALCALDÍA MAYOR

INF-RSG--CASC-185-21

MOVILIDAD

Informe Etapa de Diseños
Componente Redes Secas
Informe Sistema solar fotovoltaico interactivo con la red
Estación 20 de Julio

CONSORCIO CS

BOGOTÁ, enero 22 de 2022

PRODUCTO DOCUMENTAL

INF-RSG--CASC-185-21

Informe Etapa Diseño Componente Redes Secas Informe Sistema solar fotovoltaico interactivo con la red Estación 20 de Julio

CONTROL DE VERSIONES

Versión	Fecha	Descripción de la Modificación	Folios
Versión 00	03/01/2022	Versión inicial	20
Versión 01	26/01/2022	Versión 01 – Solución observaciones interventoría	20
		7 55 75 7	
		O TUP	

EMPRESA CONTRATISTA

	DEDOOMING	
VALIDADO POR:	REVISADO POR:	APROBADO POR:
	MOVILIDAD	
In	stituto de Desarrollo Urbano	0
Ing. Juan Carlos Echeverry	Ing. Alexander Uribe	Ing. Mario Ernesto Vacca G.
Especialista Redes Secas	Especialista Redes Secas	Director de Consultoría

REVISADO POR:	AVALADO POR:	APROBADO POR:
Ing. José Norberto Velandia Especialista en redes eléctricas, gas, teléfono, fibra óptica	Ing. Wilmer Alexander Rozo Coordinador de Interventoría	Ing. Oscar Andrés Rico Gómez Director de Interventoría

Tabla de contenido

1.1 OBJETIVO GENERAL	4
1.2 OBJETIVOS ESPECÍFICOS	4
2 LOCALIZACIÓN GENERAL DEL PROYECTO	4
3 NORMATIVILIDAD APLICADA	
4 MEMORIA DE CALCULO	
4.1 IDENTIFICACION DEL PROYECTO	(
4.2 DEMANDA DE ENERGIA	
4.3 FUENTE DE IRRADIAÇION SOLAR	(
4.4 CALCULO Y SELECCIÓN DE PANELES	7
4.5 SELECCIÓN DE INVERSORES	8
4.6 CALCULO DE CONDUÇTORES	9
4.7 CALCULO Y SELECCIÓN DE PROTECCIONES ELECTRICAS	
4.8 CALCULO DE REGULACION	. 12
4.9 SISTEMA DE MEDICION	
4.10 SISTEMA DE COMUNICACION	. 13
4.11 PLANOS UNIFILARES Y ESQUEMAS	
4.13 RETORNO DE INVERSION	
4.14 EMISIONES REDUCIDAS CO2 EN TONELADAS	
5 CONCLUSIONES Y RECOMENDACIONES	
O TOLOGIONEO I NEOGMEND/IOIGNEO	
ALCALDÍA MAYOR	
AL Índice de Tablas	
DE BOGOTA D.C.	
Tabla 1. Proyección de energía generadaTabla 2. Cálculo de conductores	
Tabla 2. Cálculo de conductores	9
Tabla 3. Cálculo de regulación	. 12
Tabla 4. Características sistema de medición	
Tabla 5. Resumen de cantidades	
Tabla 6. Retorno de inversión	
Tabla 7. Emisiones reducidas de CO2	
Tabla 8. Reducción de huella de carbono	

1 INTRODUCCIÓN

Este documento contiene el informe del SSFV interactivo con la red 240 kWp para la estación 20 de julio como parte de la etapa de diseños del contrato "Actualización, Ajustes y Complementación de la Factibilidad y Estudios y Diseños del Cable Aéreo en San Cristóbal, En Bogotá D.C.".

1.1 OBJETIVO GENERAL

 Elaborar el diseño del sistema solar fotovoltaico interactivo con la red de 240 kW para la estación 20 de Julio de la futura línea del Cable Aéreo San Cristóbal, ubicado en la cubierta de la estación.

1.2 OBJETIVOS ESPECÍFICOS

- Desarrollar los cálculos de regulación de tensión para los conductores seleccionados en el diseño del SSFV interactivo con la red.
- Presentar los cálculos de la canalización de los circuitos alimentadores tanto en corriente directa como en corriente alterna.
- Relacionar las características técnicas tanto de los paneles solares diseñados como de los inversores centrales seleccionados.

Instituto de Desarrollo Urbano

 Establecer el potencial solar del lugar de instalación del SSFV interactivo con la red de 240 kWp.

2 LOCALIZACIÓN GENERAL DEL PROYECTO

El proyecto del Cable San Cristóbal se desarrolla en la localidad de San Cristóbal, el cual contemplan dos tramos. El primer tramo inicia desde la estación 20 de Julio ubicada en la Calle 30A sur con carrera quinta y finaliza en la estación motriz ubicada en el barrio la Victoria entre las calles 40 y 41 Sur, y carreras 3A Este y 3C Este. El segundo tramo inicia en la estación motriz y finaliza en la estación retorno, ubicada en el barrio la Altamira en la calle 42B sur y 43A sur, entre las carreras 12A y 12B este.

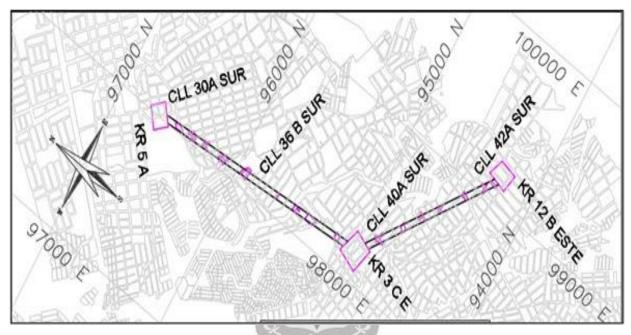


Figura 1- Localización General del Proyecto

Fuente – Elaboración propia Consorcio CS

DE BOGOTÁ D.C.

MOVILIDAD

3 NORMATIVILIDAD APLICADA de Desarrollo Urbano

- NTC 2050 "Norma Técnica Colombiana"
- Normas ENEL-CODENSA.
- RETIE "Reglamento Técnico de Instalaciones Eléctricas"
- Ley 1715

4 MEMORIA DE CALCULO

4.1 IDENTIFICACION DEL PROYECTO

El sistema solar fotovoltaico interactivo con la red de la estación 20 de julio consta de 490 paneles solares marca Jinko de 535 W cada uno y 4 inversores centrales de 60 kW marca CPS. Se agruparon arreglaros de 15 paneles solares que formaron los 33 String distribuidos en los 4 inversores y en los 3 MPPT con los que cuenta cada inversor en su caja de conexiones que permite su conexión al tablero general de distribución. El sistema es interactivo con la red a través de un medidor bidireccional que permitirá su lectura remota.

4.2 DEMANDA DE ENERGIA

El sistema solar fotovoltaico interactivo con la red de 240 kWp tendrá una potencia pico instalada del 96% de la carga total del trasformador de 250 kVA instalado en la estación 20 de julio.

MOVILIDAD
Instituto de Desarrollo Urbano

4.3 FUENTE DE IRRADIACION SOLAR

Como fuente para calcular la irradiación solar del lugar de instalación de los paneles solares se empleó la base de datos y mapa del IDEAM-UPME a través del ingreso al link publico http://atlas.ideam.gov.co/presentacion/ y https://power.larc.nasa.gov/data-access-viewer/. A continuación, se presentan las proyecciones de energía que se obtuvieron luego de analizar esta herramienta.

Proyección de la energía generada por el sistema para consumo interno por mes (kWh-mes)

	_			
Mes	Horas de sol aprovechables (horas/día)	Potencia (kW)	Días del mes (día/mes)	Energía mes generada (kWh/mes)
Enero	4,5	240	31	33480
Febrero	4,2	240	28	28224
Marzo	4,2	240	31	31248
Abril	3,6	240	30	25920
Mayo	3,5	240	31	26040
Junio	3,6	240	30	25920
Julio	3,7	240	31	27528
Agosto	4,1	240	31	30504
Septiembre	3,9	240	30	28080
Octubre	3,9	240	31	29016
Noviembre	4,0	240	30	28800
Diciembre	4,1	240	31	30504
	Total energía g	enerada año	YOR	345264

Tabla 1. Proyección de energía generada

Fuente – Elaboración propia Consorcio CS

Como se puede observar en los cuadros anteriores se obtiene un total de energía generada por el sistema solar fotovoltaico de 345.264 kWh-año aproximadamente en condiciones ideales.

4.4 CALCULO Y SELECCIÓN DE PANELES

Se seleccionaron paneles de la marca Jinko solar de 535 Wp cada uno de la referencia Tiger PRO 72HC Mono-facial que tiene las siguientes características:

Peso: 29 kg

Dimensiones: 2.27*1.13*0.035 m

Tipo de cristal: 3,2 mm, revestimiento antirreflejos, alta transmisión, bajo contenido de hierro, vidrio templado.

Vmp: 40.63 V

Imp: 13.17 A

Voc: 49.34 V

Isc: 13.79 A

Para el sistema solar fotovoltaico se diseñaron 490 paneles con las características mencionadas anteriormente para cada panel arrojando una potencia total de paneles de 262.15 kWp.

490 * 535 Wp = 262.150 Wp

Con los 490 paneles se realizaron arreglos de 15 paneles para cada string para un total de 33 strings como se muestra:

MOVILIDAD

490 paneles / 15 paneles = 33 string de Desarrollo Urbano

15 paneles * 49.34 V = 750 V tensión total de cada string

Dado que los paneles se van a conectar en serie la corriente es la misma de un solo panel 13.79 A.

4.5 SELECCIÓN DE INVERSORES

Debido al comportamiento de la curva de demanda se seleccionan 4 inversores centrales de 60 kW 480V 72.2 A en la salida y que cuenta con 3 módulos MPPT y 15 entradas 5 por cada módulo MPPT para la llegada en DC de los paneles solares.

33 string / 4 inversores = 8.25 string repartidos en 3 inversores con 8 string y 1 inversor con 9 string.

Dado que la tensión de salida de los inversores es de 440 V se conectará directamente al tablero de distribución sin necesidad de un transformador baja-baja para su alimentación.

4.6 CALCULO DE CONDUCTORES

Se tienen 33 string de 15 paneles solares en serie por lo cual cada string presenta una corriente total de 13.79 A. El cable a usar en cada uno de los arreglos es cable fotovoltaico PV XLPE 90° 2000 V calibre 12 AWG como se muestra a continuación:

Calibre AWG	Longitud m	Corriente A	Seccion cable mm²	Resistencia	Tension V	Regulacion %
12	80	9,6	4	0,0053	698	0,291575931

Tabla 2. Cálculo de conductores

Fuente – Elaboración propia Consorcio CS

Instituto de Desarrollo Urbano

4.7 CALCULO Y SELECCIÓN DE PROTECCIONES ELECTRICAS

El diagrama esquemático eléctrico básico del inversor CPS de 60 kW se muestra en la figura a continuación. Los circuitos fuente pasan a través de circuitos de protección contra sobretensiones, filtros de ondas DC EMI, y circuitos de refuerzo DC-DC independientes para lograr el punto de máxima potencia seguimiento y aumento de los voltajes a un bus de CC común. El inversor utiliza línea Mediciones de voltaje y frecuencia para sincronizar con la red y convertir la energía fotovoltaica disponible a la alimentación de CA mediante la inyección de corriente CA trifásica equilibrada a la red eléctrica. Cualquier componente de CA de alta frecuencia se elimina pasando a través de un relé de dos etapas y un filtro de onda EMI para producir alta calidad Alimentación de CA.

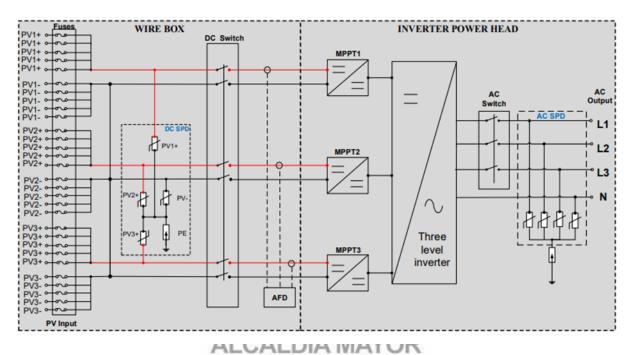


Figura 2- Esquemático inversor Fuente – Ficha técnica inversor CPS

Instituto de Desarrollo Urbano

Los inversores CPS 60 kW cumplen con todo el esquema de protecciones del estándar para inversores, convertidores, controladores y equipos de sistemas de interconexión para su uso con recursos energéticos distribuidos UL 1741 (UL 1741 SA) / IEEE 1547 y su distribución física se puede observar en la siguiente imagen:

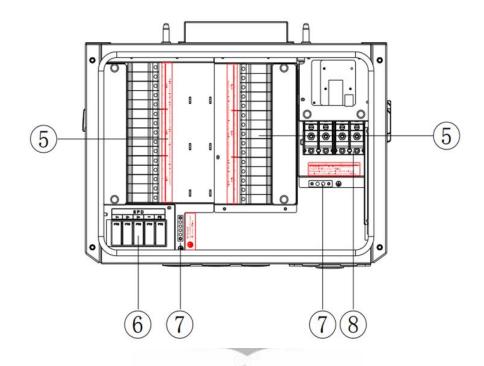


Figura 3- Caja de conexiones inversor Fuente – Ficha técnica inversor CPS

- (5) Terminal / portafusibles de entrada CC Instituto de Desarrollo Urbano
- 6 DC SPD (Dispositivo de protección contra sobretensiones)
- 7 Terminal de tierra interno
- (8) Bloque de terminales de salida de CA

La caja de conexiones incluye de fabrica portafusibles y fusibles de 15 A para cada uno de los string de los 3 MPPT por lo cual, si la corriente de cada arreglo no excede la corriente de fabrica permitida, estos cumplen con las condiciones técnicas y normativa de funcionamiento. Como se mencionó anteriormente la corriente de cada uno de los 33 string que conforman el SSFV es de 13.79 A por lo cual se tiene:

 $13.79 \text{ A} \times 1,25 \times 1,25 = 21 \text{ A}$

Como se puede observar, es necesario realizar el cambio de fusible por uno de valor nominal 20 A para soportar la corriente máxima de cada uno de los string.

4.8 CALCULO DE REGULACION

A continuación, se presenta el cálculo de regulación de las acometidas en baja tensión según su ubicación dentro del sistema solar fotovoltaico y como se puede apreciar en el diagrama unifilar y diagrama de conexiones.

				15.5	CALCULO I	LOULHOID	TO OME	ibno								
ALIMENTA	DORES	Total Carga	Tension		DISTANCIA	MOMENTO	K Reg.	REGI	JLACIÓN %	OHM/KM	CAE	BLES EN C	O BRE	CORRIENTE	PROTECO	CIÓN
Desde	Hasta	kVA		Q	Metros	kVA-M	Q	Tramo	Acumulada		Fase	Neutro	Тіепа	Amperios	Proteccion	ICC
In versores 60 kW	Tablero de conexión 4 inversores de 60 kW	60	480 V	3∅	8	480	0,000252	0,06	0,06	0,13	2	2	8	79	70-100A	35kA
Tablero de conexión 4 inversores de 60 kW	Transformador 250 kV A	250	480 V	3Ø	10	2.500	0,000065	0,16	0,22	0,09	350	350	2	316	250-320	50KA

CALCULO REGULACION ACOMETIDAS

Tabla 3. Cálculo de regulación

Fuente Elaboración propia Consorcio CS

MOVILIDAD

Instituto de Desarrollo Urbano

4.9 SISTEMA DE MEDICION

MEDIDA INDIRECTA TIPO INTERIOR

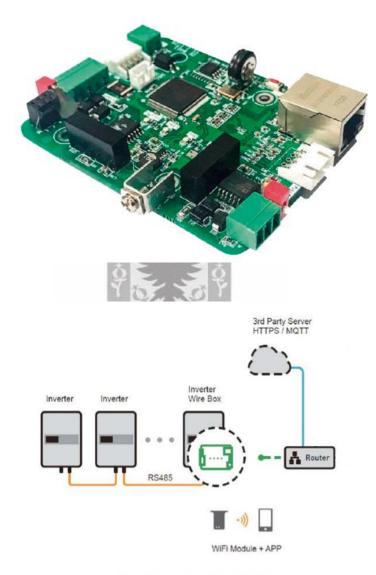
Medidor de energía BIDIRECCIONAL ELSTER A1800 4 puntos de medición Calibrado en los 4 cuadrantes. Burden TC´s 2.5 VA Calibración 25% Clase de exactitud 0.5S

MEDIDOR ELECTRONICO
MEDIDOR ELECTRONICO DE ENERGIA BIDIRECCIONAL
ACTIVA IMMILY REACTIVA IMMARSI
DEMANDA MAXIMA
FACTOR DE POTENCIA PROMEDIO
TENSION DE OPERACION 3x208/120 V.
CORRIENTE MAXIMA 6 A.
RANGO DE CORRIENTE 1,5/6 A

EQUIPO DE MEDIDA INDIRECTA MEDIA TENSION					
TRANSFORMADORES DE CORRIENTE					
TENSION DE SERVICIO	13,2 kV				
TENSION NOMINAL	15 kV				
FRECUENCIA	60 Hz.				
CLASE	0.5 s.				
USO	EXTERIOR				
NUMERO DE NUCLEOS	1				
CARGA	2,5 - 5 VA				
TENSION DE ENSAYO A 60 Hz.	34 kV.				
TENSION DE ENSAYO AL IMPULSO	95 kV.				
CORRIENTE PRIMARIA	10 A.				
CORRIENTE SECUNDARIA	5 A.				
CORRIENTE TERMICA IIII	12 kA				
CORRIENTE DINAMICA	30 kA				
FACTOR DE SEGURIDAD	< 5				

Tabla 4. Características sistema de medición

Fuente – Elaboración propia Consorcio CS


Instituto de Desarrollo Urbano

4.10 SISTEMA DE COMUNICACION

Cada uno de los 4 inversores centrales contaran con el CPS Flex Gateway como solución de comunicación y control para los inversores. El gateway es un registrador de datos maestros Modbus y un dispositivo de comunicaciones. Esta solución permite 3 opciones de comunicación: (1) transmisión local de datos Modbus RS485 a soluciones de terceros, (2) comunicaciones basadas en Ethernet para operaciones de servicio CPS, y (3) una conexión programable basada en Ethernet a una ubicación elegida. El Flex Gateway permite la carga remota de firmware.

Flex Gateway Installed in WireBox

Figura 4- Modulo comunicación inversor

Fuente – Ficha técnica modulo comunicación CPS

4.11 PLANOS UNIFILARES Y ESQUEMAS

Se adjuntan los siguientes planos:

- Diagrama Unifilar del sistema solar fotovoltaico interactivo con la red
- Diagrama de conexiones solar fotovoltaico interactivo con la red

4.12 RESUMEN DE CANTIDADES

Se presenta un cuadro de resumen de cantidades y especificaciones técnicas de los principales equipos seleccionados para la instalación.

RESUMEN DE CANTIDADES DEL SISTEMA FOTOVOLTAICO						
Equipo o material	Equipo o material Especificaciones generales					
Paneles solares	Panel Jinko Solar 535 W Tiger Pro	490				
Inversores de corriente	In Inversor CPS 60 kW trifásico 480V	4				
Conductores	cable fotovoltaico PV XLPE 90° 2000 V calibre 12 AWG	5500				
Gabinetes	Gabinete en acero inox con protección IP 68	1				
Otros accesorios	Conector MC4 certificado macho-hembra	66				
Medidores	Medidor de energía bidireccional con lectura remota	1				
Equipos de comunicación	CPS FLEX GATEWAY	1				

Tabla 5. Resumen de cantidades

4.13 RETORNO DE INVERSION

Teniendo en cuenta que el ciclo de vida de una planta solar fotovoltaica está alrededor de los 25 años y que su principal componente los módulos fotovoltaicos tienen una degradación de su potencia nominal lineal sobre los 25 años. En la tabla siguiente se muestra la energía que sería generada aproximadamente desde el año 1 hasta el año 25 año teniendo en cuenta las perdidas inherentes a los sistemas solares fotovoltaicas, con retorno de inversión a partir del año 8 aproximadamente con un costo de kWh aproximado de \$580 para el año 1 y un aumento anual estimado para los años siguientes.

CONCEPTO	VALOR	ENERGIA kWh	ACUMULADO
COSTO INICIAL	\$ 1.708.314.269	★	
AÑO 1	\$ 160.202.380	276211	-\$ 1.548.111.889
AÑO 2	\$ 167.343.561	274001	-\$ 1.380.768.328
AÑO 3	\$ 174.791.699	271792	-\$ 1.205.976.628
AÑO 4	\$ 182.559.272	269582	-\$ 1.023.417.357
AÑO 5	\$ 190.659.217	267372	-\$ 832.758.139
AÑO 6	\$ 199.104.948	265163	-\$ 633.653.191
AÑO 7	\$ 207.910.364	262953	-\$ 425.742.827
AÑO 8	\$ 217.089.869	260743	-\$ 208.652.958
AÑO 9	\$ 226.658.381	258533	\$ 18.005.423
AÑO 10	\$ 236.631.350	256324	\$ 254.636.772
AÑO 11	\$ 247.024.770	esarr 254114 chan	\$ 501.661.542
AÑO 12	\$ 257.855.195	251904	\$ 759.516.737
AÑO 13	\$ 269.139.752	249695	\$ 1.028.656.489
AÑO 14	\$ 280.896.158	247485	\$ 1.309.552.647
AÑO 15	\$ 293.142.729	245275	\$ 1.602.695.375
AÑO 16	\$ 305.898.399	243066	\$ 1.908.593.774
AÑO 17	\$ 319.182.732	240856	\$ 2.227.776.506
AÑO 18	\$ 333.015.936	238646	\$ 2.560.792.442
AÑO 19	\$ 347.418.875	236437	\$ 2.908.211.317
AÑO 20	\$ 362.413.084	234227	\$ 3.270.624.401
AÑO 21	\$ 378.020.780	232017	\$ 3.648.645.181
AÑO 22	\$ 394.264.873	229808	\$ 4.042.910.054
AÑO 23	\$ 411.168.979	227598	\$ 4.454.079.033
AÑO 24	\$ 428.757.431	225388	\$ 4.882.836.463
AÑO 25	\$ 447.055.285	223178	\$ 5.329.891.748

Tabla 6. Retorno de inversión

4.14 EMISIONES REDUCIDAS CO2 EN TONELADAS

El uso continuado de combustibles fósiles genera elevados niveles de dióxido de carbono y contaminación. Esta contaminación por CO2 provoca peligrosos problemas sanitarios y contribuye al cambio climático. El CO2 tiene un impacto nocivo para el medio ambiente ya que modifica los patrones climáticos, eleva el nivel del mar y aumenta el daño ecológico.

La luz solar es gratis, infinita y fácilmente accesible, a diferencia de los combustibles fósiles que deben explotarse, extraerse y transportarse. Estos procesos provocan una importante degradación geológica y ecológica, además de entrañar un riesgo de desastre ecológico como suponen, por ejemplo, los vertidos de petróleo.

Tal como su nombre los indica el Factor de Emisión del Sistema Interconectado Nacional SIN puede ser empleado para proyectos y mediciones específicas de emisiones de GEI, para estimación de GEI por consumo de energía eléctrica, para calcular inventarios de emisiones de GEI y para calcular la huella de carbono empresarial o corporativa (mediante la cual se cuantifican las emisiones de GEI de una organización y se identifican las acciones específicas con el fin de mejorar la gestión de los GEI). Todo esto en concordancia con lo establecido en la norma ISO 14067, el Protocolo GHG y la cuantificación de emisiones GEI por unidad generada promedio.

EL cálculo de reducción de emisiones se realizó tomando como base el factor de emisiones de 0.380 TonCO2/MWh adoptado por la UPME.

	Energia anual	Emisones
Años	solar	reducidas CO2
	kWh	Toneladas
1	276211	107,17
2	274001	106,31
3	271792	105,46
4	269582	104,60
5	267372	103,74
6	265163	102,88
7	262953	102,03
8	260743	101,17
9	258533	100,31
10	256324	99,45
11	254114	98,60
12	251904	97,74
13	249695	96,88
14	247485	96,02
15 AL	C A 245275 M A	95,17
16 D	243066	94,31
17	240856	93,45
18	238646	92,59
19 nstitu	ito de236437 rrollo	Urba91,74
20	234227	90,88
21	232017	90,02
22	229808	89,17
23	227598	88,31
24	225388	87,45
25	223178	86,59
TOTAL	6242369	2422

Tabla 7. Emisiones reducidas de CO2

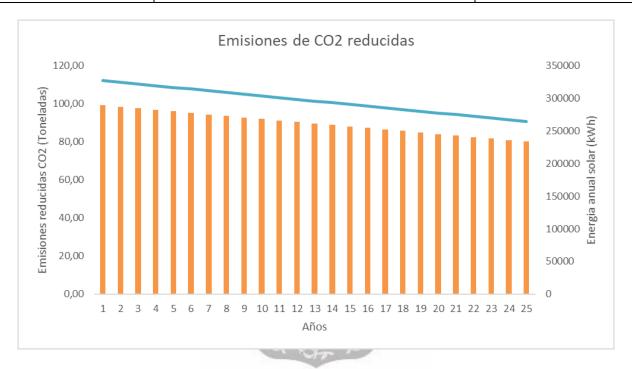


Figura 5 – Diagrama emisiones CO2 reducidas

Fuente – Elaboración propia Consorcio CS

BUGUTA D.C.

MOVILIDAD

Instituto de Desarrollo Urbano

REDUCCIÓN DE HUELLA DE CARBONO

La reducción de la huella de carbono está directamente relacionada con la vida útil del sistema que son 25 años y la generación del sistema fotovoltaico.

Generación Esperada x 25 Años	6.242	MWh
Factor de Emisión CO2	0,37	Tn de CO2 eq/Mwh
Huella de Carbono	2.291	Tn de CO2 eq

Tabla 8. Reducción de huella de carbono

5 CONCLUSIONES Y RECOMENDACIONES

- Se realizaron los cálculos de regulación de tensión para los conductores seleccionados en el diseño del SSFV interactivo con la red cumpliendo con la normatividad vigente.
- ➤ En desarrollo del presente documento de desarrollaron los cálculos de la canalización de los circuitos alimentadores tanto en corriente directa como en corriente alterna.
- > Se indicaron las características técnicas tanto de los paneles solares diseñados como de los inversores centrales seleccionados.
- Se estableció el potencial solar del lugar de instalación del SSFV interactivo con la red de 240 kWp.

